@article{WaldvogelRitzmannFreyleretal.2021, author = {Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Helm, Michael and Monti, Elena and Albracht, Kirsten and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco}, title = {The Anticipation of Gravity in Human Ballistic Movement}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.614060}, year = {2021}, abstract = {Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation.}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} } @article{MolinnusDrinicIkenetal.2021, author = {Molinnus, Denise and Drinic, Aleksander and Iken, Heiko and Kr{\"o}ger, Nadja and Zinser, Max and Smeets, Ralf and K{\"o}pf, Marius and Kopp, Alexander and Sch{\"o}ning, Michael Josef}, title = {Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk}, series = {Biosensors and Bioelectronics}, volume = {183}, journal = {Biosensors and Bioelectronics}, number = {Art. 113204}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2021.113204}, year = {2021}, language = {en} } @phdthesis{Bayer2021, author = {Bayer, Robin}, title = {Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology}, publisher = {Universit{\"a}t zu K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:38-362212}, pages = {IV, 115 Seiten}, year = {2021}, language = {en} } @article{YoshinobuSchoening2021, author = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing}, series = {Current Opinion in Electrochemistry}, journal = {Current Opinion in Electrochemistry}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2021.100727}, year = {2021}, language = {en} } @article{NguyenXuanRabczukNguyenThoietal.2011, author = {Nguyen-Xuan, H. and Rabczuk, T. and Nguyen-Thoi, T. and Tran, Thanh Ngoc and Nguyen-Thanh, N.}, title = {Computation of limit and shakedown loads using a node-based smoothed finite element method}, series = {International Journal for Numerical Methods in Engineering}, volume = {90}, journal = {International Journal for Numerical Methods in Engineering}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0207}, doi = {10.1002/nme.3317}, pages = {287 -- 310}, year = {2011}, abstract = {This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal-dual algorithm. An associated primal-dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal-dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods.}, language = {en} } @phdthesis{Bronder2020, author = {Bronder, Thomas}, title = {Label-free detection of tuberculosis DNA with capacitive field-effect biosensors}, publisher = {Philipps-Universit{\"a}t Marburg}, address = {Marburg}, doi = {10.17192/z2021.0056}, pages = {X, 162 S}, year = {2020}, language = {en} } @article{GivanoudiCornelisRasschaertetal.2021, author = {Givanoudi, Stella and Cornelis, Peter and Rasschaert, Geertrui and Wackers, Gideon and Iken, Heiko and Rolka, David and Yongabi, Derick and Robbens, Johan and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source}, series = {Sensors and Actuators B: Chemical}, journal = {Sensors and Actuators B: Chemical}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2021.129484}, pages = {Article 129484}, year = {2021}, language = {en} } @article{MoratFaudeHanssenetal.2020, author = {Morat, Mareike and Faude, Oliver and Hanssen, Henner and Ludyga, Sebastian and Zacher, Jonas and Eibl, Angi and Albracht, Kirsten and Donath, Lars}, title = {Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph17061853}, pages = {1 -- 14}, year = {2020}, abstract = {Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations.}, language = {en} } @article{PogorelovaRogachevDigeletal.2020, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Digel, Ilya and Chernigova, Svetlana and Nardin, Dmitry}, title = {Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties}, series = {Materials}, volume = {13}, journal = {Materials}, number = {12}, publisher = {MDPI}, address = {Basel}, isbn = {1996-1944}, doi = {10.3390/ma13122849}, pages = {1 -- 16}, year = {2020}, abstract = {Bacterial cellulose (BC) is a promising material for biomedical applications due to its unique properties such as high mechanical strength and biocompatibility. This article describes the microbiological synthesis, modification, and characterization of the obtained BC-nanocomposites originating from symbiotic consortium Medusomyces gisevii. Two BC-modifications have been obtained: BC-Ag and BC-calcium phosphate (BC-Ca3(PO4)2). Structure and physicochemical properties of the BC and its modifications were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and infrared Fourier spectroscopy as well as by measurements of mechanical and water holding/absorbing capacities. Topographic analysis of the surface revealed multicomponent thick fibrils (150-160 nm in diameter and about 15 µm in length) constituted by 50-60 nm nanofibrils weaved into a left-hand helix. Distinctive features of Ca-phosphate-modified BC samples were (a) the presence of 500-700 nm entanglements and (b) inclusions of Ca3(PO4)2 crystals. The samples impregnated with Ag nanoparticles exhibited numerous roundish inclusions, about 110 nm in diameter. The boundaries between the organic and inorganic phases were very distinct in both cases. The Ag-modified samples also showed a prominent waving pattern in the packing of nanofibrils. The obtained BC gel films possessed water-holding capacity of about 62.35 g/g. However, the dried (to a constant mass) BC-films later exhibited a low water absorption capacity (3.82 g/g). It was found that decellularized BC samples had 2.4 times larger Young's modulus and 2.2 times greater tensile strength as compared to dehydrated native BC films. We presume that this was caused by molecular compaction of the BC structure.}, language = {en} }