@article{GrajewskiHronTurek2006, author = {Grajewski, Matthias and Hron, Jaroslav and Turek, Stefan}, title = {Numerical analysis for a new non-conforming linear finite element on quadrilaterals}, series = {Journal of Computational and Applied Mathematics}, volume = {193}, journal = {Journal of Computational and Applied Mathematics}, number = {1}, issn = {0377-0427}, doi = {10.1016/j.cam.2005.05.024}, pages = {38 -- 50}, year = {2006}, language = {en} } @article{GrajewskiKoesterTurek2010, author = {Grajewski, Matthias and K{\"o}ster, Michael and Turek, Stefam}, title = {Numerical analysis and implementational aspects of a new multilevel grid deformation method}, series = {Applied Numerical Mathematics}, volume = {60}, journal = {Applied Numerical Mathematics}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9274}, doi = {10.1016/j.apnum.2010.03.017}, pages = {767 -- 781}, year = {2010}, abstract = {Recently, we introduced and mathematically analysed a new method for grid deformation (Grajewski et al., 2009) [15] we call basic deformation method (BDM) here. It generalises the method proposed by Liao et al. (Bochev et al., 1996; Cai et al., 2004; Liao and Anderson, 1992) [4], [6], [20]. In this article, we employ the BDM as core of a new multilevel deformation method (MDM) which leads to vast improvements regarding robustness, accuracy and speed. We achieve this by splitting up the deformation process in a sequence of easier subproblems and by exploiting grid hierarchy. Being of optimal asymptotic complexity, we experience speed-ups up to a factor of 15 in our test cases compared to the BDM. This gives our MDM the potential for tackling large grids and time-dependent problems, where possibly the grid must be dynamically deformed once per time step according to the user's needs. Moreover, we elaborate on implementational aspects, in particular efficient grid searching, which is a key ingredient of the BDM.}, language = {en} } @article{GrajewskiKoesterTurek2009, author = {Grajewski, Matthias and K{\"o}ster, Michael and Turek, Stefan}, title = {Mathematical and Numerical Analysis of a Robust and Efficient Grid Deformation Method in the Finite Element Context}, series = {SIAM Journal on Scientific Computing}, volume = {31}, journal = {SIAM Journal on Scientific Computing}, number = {2}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia, Pa.}, doi = {10.1137/050639387}, pages = {1539 -- 1557}, year = {2009}, language = {en} } @article{GoeddekeStrzodkaMohdYusofetal.2007, author = {G{\"o}ddeke, Dominik and Strzodka, Robert and Mohd-Yusof, Jamaludin and McCormick, Patrick and Buijssen, Sven H.M. and Grajewski, Matthias and Turek, Stefan}, title = {Exploring weak scalability for FEM calculations on a GPU-enhanced cluster}, series = {Parallel Computing}, volume = {33}, journal = {Parallel Computing}, number = {10-11}, issn = {0167-8191}, doi = {10.1016/j.parco.2007.09.002}, pages = {685 -- 699}, year = {2007}, language = {en} } @article{DadfarCamozziDarguzyteetal.2020, author = {Dadfar, Dryed Mohammadali and Camozzi, Denise and Darguzyte, Milita and Roemhild, Karolin and Varvar{\`a}, Paola and Metselaar, Josbert and Banala, Srinivas and Straub, Marcel and G{\"u}ver, Nihan and Engelmann, Ulrich M. and Slabu, Ioana and Buhl, Miriam and Leusen, Jan van and K{\"o}gerler, Paul and Hermanns-Sachweh, Benita and Schulz, Volkmar and Kiessling, Fabian and Lammers, Twan}, title = {Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance}, series = {Journal of Nanobiotechnology}, volume = {18}, journal = {Journal of Nanobiotechnology}, number = {Article number 22}, publisher = {Nature Portfolio}, issn = {1477-3155}, doi = {10.1186/s12951-020-0580-1}, pages = {1 -- 13}, year = {2020}, abstract = {Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as ResovistĀ® and SineremĀ®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications.}, language = {en} } @article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @phdthesis{Engelmann2019, author = {Engelmann, Ulrich M.}, title = {Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy}, publisher = {Infinite Science Publishing}, address = {L{\"u}beck}, isbn = {978-3-945954-58-4}, year = {2019}, language = {en} } @article{ChenJostVolkeretal.2017, author = {Chen, Chao and Jost, Peter and Volker, Hanno and Kaminski, Marvin and Wirtssohn, Matti R. and Engelmann, Ulrich M. and Kr{\"u}ger, K. and Schlich, Franziska F. and Schlockermann, Carl and Lobo, Ricardo P.S.M. and Wuttig, Matthias}, title = {Dielectric properties of amorphous phase-change materials}, series = {Physical Review B}, volume = {95}, journal = {Physical Review B}, number = {9}, issn = {2469-9950}, doi = {10.1103/PhysRevB.95.094111}, pages = {Article number 094111}, year = {2017}, language = {en} } @article{EngelmannBuhlBaumannetal.2017, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Baumann, Martin and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia}, series = {Current Directions in Biomedical Engineering}, volume = {3}, journal = {Current Directions in Biomedical Engineering}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2017-0096}, pages = {457 -- 460}, year = {2017}, language = {en} } @article{EngelmannBuhlDraacketal.2018, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Draack, Sebastian and Viereck, Thilo and Frank, and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications}, series = {IEEE Magnetic Letters}, volume = {9}, journal = {IEEE Magnetic Letters}, number = {Article number 8519617}, publisher = {IEEE}, address = {New York, NY}, issn = {1949-307X}, doi = {10.1109/LMAG.2018.2879034}, year = {2018}, abstract = {Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23\% for agglomerated MNP in suspension and a decrease by up to 28\% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy.}, language = {en} }