@article{StulpeGudderHagler1988, author = {Stulpe, Werner and Gudder, S. and Hagler, J.}, title = {An Uncertainty Relation for Joint Position-Momentum Measurements}, series = {Foundations of Physics Letters. 1 (1988), H. 3}, journal = {Foundations of Physics Letters. 1 (1988), H. 3}, isbn = {1572-9524}, pages = {287 -- 292}, year = {1988}, language = {en} } @article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @article{PoghossianSchoeningSchrothetal.2001, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Schroth, P. and Simonis, A. and L{\"u}th, H.}, title = {An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {519 -- 526}, year = {2001}, language = {en} } @article{Ziemons1989, author = {Ziemons, Karl}, title = {An investigation of the spin structure of the proton in deep inelastic scattering of polarised muons and polarised protons}, series = {Nuclear Physics B}, volume = {328}, journal = {Nuclear Physics B}, number = {1}, isbn = {0550-3213}, pages = {1 -- 35}, year = {1989}, abstract = {The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured in the range 0.01<×<0.7. The spin dependent structure function g1(x) for the proton has been determined and, combining the data with earlier SLAC measurements, its integral over x found to be 0.126±0.010(stat.)±0.015(syst.), in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Biorken sum rule, this result implies a significant negative value for the integral of g1 for the neutron. These integrals lead to the conclusion, in the na{\"i}ve quark parton model, that the total quark spin constitutes a rather small fraction of the spin of the nucleon. Results are also presented on the asymmetries in inclusive hadron production which are consistent with the above picture.}, language = {en} } @article{StaatKuehnHaugeretal.2004, author = {Staat, Manfred and K{\"u}hn, R. and Hauger, W. and Sponagel, Stefan}, title = {An Interpretation of Wolff's Law}, series = {Biomedizinische Technik. 49 (2004)}, journal = {Biomedizinische Technik. 49 (2004)}, isbn = {0932-4666}, pages = {1020 -- 1021}, year = {2004}, language = {de} } @article{SchuetzSchoeningSchrothetal.2000, author = {Sch{\"u}tz, S. and Sch{\"o}ning, Michael Josef and Schroth, P. and Weißbecker, B. and Kordos, P. and L{\"u}th, H. and Hummel, Hans E.}, title = {An insectbased BioFET as a bioelectronic nose}, series = {Sensors and Actuators B. 65 (2000), H. 1-3}, journal = {Sensors and Actuators B. 65 (2000), H. 1-3}, isbn = {0925-4005}, pages = {291 -- 295}, year = {2000}, language = {en} } @article{SchuetzSchoeningSchrothetal.1998, author = {Sch{\"u}tz, S. and Sch{\"o}ning, Michael Josef and Schroth, P. and Weißbecker, B. and Kordos, P. and L{\"u}th, H. and Hummel, Hans E.}, title = {An insectbased BioFET as a bioelectronic nose}, series = {Proceedings of the Seventh International Meeting on Chemical Sensors : 27 - 30 July, 1998, Beijing, P. R. China / ed. Zhi-Gang Zhou}, journal = {Proceedings of the Seventh International Meeting on Chemical Sensors : 27 - 30 July, 1998, Beijing, P. R. China / ed. Zhi-Gang Zhou}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, pages = {314 -- 316}, year = {1998}, language = {en} } @article{TranMottaghyArltKoerferetal.2017, author = {Tran, Linda and Mottaghy, K. and Arlt-K{\"o}rfer, Sabine and Waluga, Christian and Behbahani, Mehdi}, title = {An experimental study of shear-dependent human platelet adhesion and underlying protein-binding mechanisms in a cylindrical Couette system}, series = {Biomedizinische Technik}, volume = {62}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2015-0034}, pages = {383 -- 392}, year = {2017}, language = {en} } @article{HonarvarfardGamellaPoghossianetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer}, series = {Applied Materials Today}, volume = {9}, journal = {Applied Materials Today}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-9407}, doi = {10.1016/j.apmt.2017.08.003}, pages = {266 -- 270}, year = {2017}, abstract = {An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte-insulator-semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{MoseleyHalamekKrameretal.2014, author = {Moseley, Fiona and Halamek, Jan and Kramer, Friederike and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible CNOT logic gate realized in a flow system}, series = {Analyst}, volume = {139}, journal = {Analyst}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal) ; 0003-2654 (Print)}, doi = {10.1039/C4AN00133H}, pages = {1839 -- 1842}, year = {2014}, abstract = {An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} }