@article{SiqueiraMakiPaulovichetal.2010, author = {Siqueira, Jose R. and Maki, Rafael M. and Paulovich, Fernando V. and Werner, Frederik and Poghossian, Arshak and Oliveira, Maria C. F. de and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor}, series = {Analytical Chemistry}, volume = {82}, journal = {Analytical Chemistry}, number = {1}, publisher = {ACS Publications}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac9024076}, pages = {61 -- 65}, year = {2010}, abstract = {The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L-1 down to 0.5 mmol L-1. Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems}, language = {en} } @article{SiqueiraBaeckerPoghossianetal.2010, author = {Siqueira, Jos{\´e} R. Jr. and B{\"a}cker, Matthias and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6300}, doi = {10.1002/pssa.200983301}, pages = {781 -- 786}, year = {2010}, abstract = {The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO2-Ta2O5 chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (ConCap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time.}, language = {en} } @article{SpelthahnSchaffrathCoppeetal.2010, author = {Spelthahn, Heiko and Schaffrath, Sophie and Coppe, Thomas and Rufi, Frederic and Sch{\"o}ning, Michael Josef}, title = {Development of an electrolyte-insulator-semiconductor (EIS) based capacitive heavy metal sensor for the detection of Pb2+ und Cd2+ ions}, series = {Physica status solidi (a) : applications and material science}, volume = {207}, journal = {Physica status solidi (a) : applications and material science}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.200983306}, pages = {930 -- 934}, year = {2010}, abstract = {Chalcogenide glass materials as membranes for potentiometric sensors for chemical analysis in solutions have been studied since more than 20 years. In this work, an electrolyte-insulator-semiconductor structure was combined with chalcogenide glass membranes prepared by means of the pulsed laser deposition technique. Depending on the membrane composition a selectivity to different ions (Cd2+ and Pb2+) is achieved. The different sensor membranes have been physically characterised using microscopy, ellipsometry, profilometry, atomic force microscopy (AFM), scanning electron microscopy (SEM) and Rutherford backscattering spectrometry (RBS). The electrochemical behaviour has been investigated via capacitance/voltage (C/V) and constant capacitance (ConCap) measurements and results in a Cd2+ sensitivity of 23.1 ± 0.6 mV per decade in a linear range from 7 × 10-6 to 10-2 mol/l and 24.4 ± 0.5 mV per decade in a linear range from 5 × 10-6 to 10-2 mol/l for Pb2+, respectively.}, language = {en} } @incollection{StaatSponagelNguyen2010, author = {Staat, Manfred and Sponagel, Stefan and Nguyen, Nhu Huynh}, title = {Experiment and material model for soft tissue materials}, series = {Constitutive models for rubber VI}, booktitle = {Constitutive models for rubber VI}, publisher = {Taylor \& Francis}, address = {London}, isbn = {9780429206597 (eBook)}, doi = {10.1201/NOE0415563277-90}, pages = {6 Seiten}, year = {2010}, abstract = {Biomechanics studies biological soft tissue materials (growth, remodeling) in vivo. For this objective, the detailed information of material properties must be well defined to construct reliable constitutive models. In the paper, the bulge test is carried out with elastomers in order to develop a test method. Then, application of the test for soft tissue materials is straightforward due to the similarities between elastomers with soft tissue materials as proved in Holzapfel 2005, Ogden 2009. It means, after the preliminary experiments and parameter identification with rubber materials has been setup, experiments on soft tissue materials can be similarly carried out. Elastomers have a complex behavior which strongly depends on the largest previous load cycle. For simplicity we consider only the first loading.}, language = {en} } @techreport{TemizArtmann2010, author = {Temiz Artmann, Ayseg{\"u}l}, title = {Fr{\"u}hgeburtenrate mindern durch ein Prognoseverfahren f{\"u}r den vorzeitigen Blasensprung - PROMPT (Premature rupture of membranes prediction test) : Abschlussbericht ; Laufzeit des Vorhabens: 01.03.2007 - 31.12.2009}, publisher = {Technische Informationsbibliothek u. Universit{\"a}tsbibliothek}, address = {Aachen}, doi = {10.2314/GBV:644277858}, year = {2010}, language = {de} } @inproceedings{TranStaat2010, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method}, year = {2010}, language = {en} } @article{TurekHeidenGuoetal.2010, author = {Turek, Monik and Heiden, Wolfgang and Guo, Sharon and Riesen, Alfred and Schubert, J{\"u}rgen and Zander, Willi and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6300}, doi = {10.1002/pssa.200983303}, pages = {817 -- 823}, year = {2010}, abstract = {In environmental analysis, cyanide and heavy metals play an important role, because these substances are highly toxic for biological systems. They can lead to chronic and acute diseases. Due to the chemical properties of cyanide it is frequently used for industrial processes such as extraction of silver and gold. Heavy metals can be found as trace elements in nature and are often applied in industries e.g., galvanization processes. Up to now, cyanide and heavy metals can be detected by several sensors separately and their detection is often limited to laboratory investigations. In this publication, with regard to an in situ analysis, a new miniaturized silicon-based sensor system for the simultaneous detection of cyanide and heavy metals in aqueous solutions is presented that is based on chalcogenide glass-based micro ion-selective electrodes (µISEs). The µISEs are incorporated into a specially designed measuring system for the simultaneous detection of heavy metals and cyanide in solutions and validated by simultaneous measurements of Cu2+- and CN--ions, Cd2+- and CN-- ions and Pb2+- and CN--ions. The particular sensor system has shown good sensor properties in the µ-molar ion-concentration range. For simultaneous measurements in complex heavy metal and cyanide solutions an intelligent software using fuzzy logic is discussed.}, language = {en} } @article{UllrichGrottkeRossaintetal.2010, author = {Ullrich, Sebastian and Grottke, Oliver and Rossaint, Rolf and Staat, Manfred and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Virtual Needle Simulation with Haptics for Regional Anaesthesia}, pages = {3 Seiten}, year = {2010}, language = {en} } @article{WagnerMiyamotoSchoeningetal.2010, author = {Wagner, Torsten and Miyamoto, Ko-ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2010.09.161}, pages = {520 -- 523}, year = {2010}, abstract = {Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach of read out in a light-addressable potentiometric sensor (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device which allows fast and flexible generation of light patterns. With the help of these light patterns the sensor surface of the LAPS device can be read out sequentially in a raster like scheme (scanning LAPS). The DLP approach has several advantages compared to conventional scanning LAPS set-ups, e.g., the spot size, the shape and the intensity of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of measurement.}, language = {en} } @article{WagnerWernerMiyamotoetal.2010, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-ichiro and Ackermann, Hans-Josef and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {FPGA-based LAPS device for the flexible design of sensing sites on functional interfaces}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.200983320}, pages = {844 -- 849}, year = {2010}, abstract = {The development of new interfaces for (bio-)chemical sensors requires comprehensive analyses and testing. The light-addressable potentiometric sensor (LAPS) can be used as a platform to investigate the sensitivity of a newly developed interface towards (bio-)chemical agents. LAPS measurements are spatially resolved by utilisation of focused light beams to define individual measurement spots. In this work, a new digitally modulated LAPS set-up based on an FPGA design will be introduced to increase the number of measurement spots, to shorten the measurement time and to improve the measurement accuracy.}, language = {en} }