@article{ErmolaevErichevAntonovetal.2019, author = {Ermolaev, AP and Erichev, VP and Antonov, AA and Grigoryan, GL and Kotliar, Konstantin and Levitsky, YV and Hderi, K and Mazurova, YV}, title = {Assessing retinal photosensitivity in patients with central vision impairment using a portable perimeter (a preliminary report)}, series = {Vestnik oftalmologii}, volume = {135}, journal = {Vestnik oftalmologii}, number = {3}, doi = {10.17116/oftalma201913503146}, pages = {46 -- 54}, year = {2019}, language = {ru} } @article{EschweilerLaackStaat2007, author = {Eschweiler, J. and Laack, Walter van and Staat, Manfred}, title = {Elektromyographische Untersuchungen zur Kr{\"a}ftigung der Oberschenkelmuskulatur mit einem myoelektrischen Stimulator nach arthroskopischen Eingriffen am Kniegelenk}, series = {Orthop{\"a}dische Praxis. 43 (2007), H. 10}, journal = {Orthop{\"a}dische Praxis. 43 (2007), H. 10}, isbn = {0030-588x}, pages = {539 -- 542}, year = {2007}, language = {de} } @article{FeuchtSchoenbachLanzletal.2013, author = {Feucht, Nikolaus and Sch{\"o}nbach, Etienne Michael and Lanzl, Ines and Kotliar, Konstantin and Lohmann, Chris Patrick and Maier, Mathias}, title = {Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease}, series = {Clinical Ophthalmology}, volume = {7}, journal = {Clinical Ophthalmology}, publisher = {Dove Medical Press}, address = {Auckland, New Zealand}, issn = {1177-5483}, pages = {173 -- 178}, year = {2013}, language = {en} } @article{FrankBuchwaldPennekampetal.2009, author = {Frank, T. and Buchwald, D. and Pennekamp, W. and Reber, D. and Sponagel, Stefan and Laszkovics, A. and Weber, Hans-Joachim}, title = {R{\"o}ntgenologische Untersuchung der Str{\"o}mungseigenschaften funktioneller Komponenten der Herz-Lungen-Maschine}, series = {Kardiotechnik. 18 (2009), H. 2}, journal = {Kardiotechnik. 18 (2009), H. 2}, isbn = {0941-2670}, pages = {31 -- 35}, year = {2009}, language = {de} } @phdthesis{Frotscher2016, author = {Frotscher, Ralf}, title = {Electromechanical modeling and simulation of thin cardiac tissue constructs - smoothed FEM applied to a biomechanical plate problem}, year = {2016}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @inproceedings{FrotscherGossmannTemizArtmannetal.2013, author = {Frotscher, Ralf and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, booktitle = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, publisher = {Verl. d. Weißruss. Staatl. Univ.}, address = {Minsk}, organization = {International Conference Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures <1, 2013, Minsk>}, isbn = {978-985-553-135-8}, pages = {165 -- 167}, year = {2013}, language = {en} } @article{FrotscherKochStaat2015, author = {Frotscher, Ralf and Koch, Jan-Peter and Staat, Manfred}, title = {Computational investigation of drug action on human-induced stem cell derived cardiomyocytes}, series = {Journal of biomechanical engineering}, volume = {Vol. 137}, journal = {Journal of biomechanical engineering}, number = {iss. 7}, publisher = {ASME}, address = {New York}, issn = {1528-8951 (E-Journal); 0148-0731 (Print)}, doi = {10.1115/1.4030173}, pages = {071002-1 -- 071002-7}, year = {2015}, language = {en} } @article{FrotscherMuanghongDursunetal.2016, author = {Frotscher, Ralf and Muanghong, Danita and Dursun, G{\"o}zde and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290 (Print)}, doi = {10.1016/j.jbiomech.2016.01.039}, pages = {2428 -- 2435}, year = {2016}, abstract = {We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures.}, language = {en} } @inproceedings{FrotscherRaatschenStaat2012, author = {Frotscher, Ralf and Raatschen, Hans-J{\"u}rgen and Staat, Manfred}, title = {Effectiveness of the edge-based smoothed finite element method applied to soft biological tissues}, series = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, booktitle = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, editor = {Holzapfel, Gerhard A.}, publisher = {Verlag d. Technischen Universit{\"a}t Graz}, address = {Graz}, isbn = {978-3-85125-223-1}, year = {2012}, language = {en} }