@inproceedings{GallAbelAhlbrinketal.2010, author = {Gall, J. and Abel, Dirk and Ahlbrink, N. and Pitz-Paal, R. and Andersson, J. and Diehl, M. and Teixeira Boura, Cristiano Jos{\´e} and Schmitz, M. and Hoffschmidt, Bernhard}, title = {Simulation and control of solar thermal power plants}, series = {International Conference on Renewable Energies and Power Quality : ICREPQ '10 : Granada 23rd - 25th March 2010}, booktitle = {International Conference on Renewable Energies and Power Quality : ICREPQ '10 : Granada 23rd - 25th March 2010}, pages = {1 -- 5}, year = {2010}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SolarPACES 2020}, booktitle = {SolarPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{GorzalkaDahlkeGoettscheetal.2018, author = {Gorzalka, Philip and Dahlke, Dennis and G{\"o}ttsche, Joachim and Israel, Martin and Patel, Dhruvkumar and Prahl, Christoph and Schmiedt, Jacob Estevam and Frommholz, Dirk and Hoffschmidt, Bernhard and Linkiewicz, Magdalena}, title = {Building Tomograph-From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input}, series = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, booktitle = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, pages = {17 Seiten}, year = {2018}, language = {en} } @inproceedings{Gross2018, author = {Groß, Rolf Fritz}, title = {M{\"o}glichkeiten und Grenzen f{\"u}r Forschung an Fachhochschulen}, series = {Smart Building Convention und BIMconvention in Aachen im September}, booktitle = {Smart Building Convention und BIMconvention in Aachen im September}, pages = {19 Seiten}, year = {2018}, language = {de} } @inproceedings{Goettsche2005, author = {G{\"o}ttsche, Joachim}, title = {Der vertikale Sonnenlichtquotient : eine wichtige Kenngr{\"o}ße zur Charakterisierung von Lichtlenksystemen}, series = {Elftes Symposium Innovative Lichttechnik in Geb{\"a}uden : 27./28. Januar 2005, Kloster Banz}, booktitle = {Elftes Symposium Innovative Lichttechnik in Geb{\"a}uden : 27./28. Januar 2005, Kloster Banz}, publisher = {OTTI-Energie-Kolleg}, address = {Regensburg}, isbn = {3-934681-37-9}, pages = {79 -- 84}, year = {2005}, language = {de} } @inproceedings{Goettsche2008, author = {G{\"o}ttsche, Joachim}, title = {Einsatz nichtinvasiver Messtechnik zur Betriebsanalyse}, series = {Energieeffizienz + Bestand : energetische Sanierung von Geb{\"a}uden ; internationales Anwenderforum ; 14./15. Februar 2008, Kloster Banz, Bad Staffelstein}, booktitle = {Energieeffizienz + Bestand : energetische Sanierung von Geb{\"a}uden ; internationales Anwenderforum ; 14./15. Februar 2008, Kloster Banz, Bad Staffelstein}, publisher = {OTTI}, address = {Regensburg}, isbn = {978-3-934681-68-2}, pages = {44 -- 51}, year = {2008}, language = {de} } @inproceedings{Goettsche2008, author = {G{\"o}ttsche, Joachim}, title = {Das Geb{\"a}ude-Armaturenbrett (GAB) - ein hochaufl{\"o}sendes Monitoring-Tool f{\"u}r Verbrauchsdaten in Privathaushalten}, series = {Energieeffizienz + Bestand : energetische Sanierung von Geb{\"a}uden ; internationales Anwenderforum ; 14./15. Februar 2008, Kloster Banz, Bad Staffelstein}, booktitle = {Energieeffizienz + Bestand : energetische Sanierung von Geb{\"a}uden ; internationales Anwenderforum ; 14./15. Februar 2008, Kloster Banz, Bad Staffelstein}, publisher = {OTTI}, address = {Regensburg}, isbn = {978-3-934681-68-2}, pages = {216 -- 223}, year = {2008}, language = {de} } @inproceedings{Goettsche2002, author = {G{\"o}ttsche, Joachim}, title = {Erste Energiebilanz der Studentenwohnungen des Solar-Campus J{\"u}lich}, series = {Zw{\"o}lftes Symposium Thermische Solarenergie : 24. bis 26. April 2002, Kloster Banz, Bad Staffelstein}, booktitle = {Zw{\"o}lftes Symposium Thermische Solarenergie : 24. bis 26. April 2002, Kloster Banz, Bad Staffelstein}, publisher = {OTTI-Energie-Kolleg}, address = {Regensburg}, isbn = {3-934681-20-4}, pages = {251 -- 256}, year = {2002}, language = {de} } @inproceedings{GoettscheHoffschmidtSchmitzetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, S. and Sauerborn, Markus and Rebholz, C. and Iffland, D. and Badst{\"u}bner, R. and Buck, R. and Teufel, E.}, title = {Test of a mini-mirror array for solar concentrating systems}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, booktitle = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lissabon}, isbn = {978-1-61782-228-5}, pages = {1242 -- 1250}, year = {2008}, language = {en} } @inproceedings{GoettscheKornAmato2015, author = {G{\"o}ttsche, Joachim and Korn, Michael and Amato, Alexandre}, title = {The Passivhaus concept for the Arabian Peninsula - An energetic-economical evaluation considering the thermal comfort}, series = {QScience Proceedings: Vol 2015}, booktitle = {QScience Proceedings: Vol 2015}, doi = {10.5339/qproc.2015.qgbc.38}, pages = {8 Seiten}, year = {2015}, abstract = {The Passivhaus building standard is a concept developed for the realization of energy-efficient and economical buildings with a simultaneous high utilization comfort under European climate conditions. Major elements of the Passivhaus concept are a high thermal insulation of the external walls, the use of heat and/or solar shading glazing as well as an airtight building envelope in combination with energy-efficient technical building installations and heating or cooling generators, such as an efficient energy-recovery in the building air-conditioning. The objective of this research project is the inquiry to determine the parameters or constraints under which the Passivhaus concept can be implemented under the arid climate conditions in the Arabian Peninsula to achieve an energy-efficient and economical building with high utilization comfort. In cooperation between the Qatar Green Building Council (QGBC), Barwa Real Estate (BRE) and Kahramaa the first Passivhaus was constructed in Qatar and on the Arabian Peninsula in 2013. The Solar-Institut J{\"u}lich of Aachen University of Applied Science supports the Qatar Green Building Council with a dynamic building and equipment simulation of the Passivhaus and the neighbouring reference building. This includes simulation studies with different component configurations for the building envelope and different control strategies for heating or cooling systems as well as the air conditioning of buildings to find an energetic-economical optimum. Part of these analyses is the evaluation of the energy efficiency of the used energy recovery system in the Passivhaus air-conditioning and identification of possible energy-saving effects by the use of a bypass function integrated in the heat exchanger. In this way it is expected that on an annual basis the complete electricity demand of the building can be covered by the roof-integrated PV generator.}, language = {en} }