@article{SchopenNarayanBeckmannetal.2024, author = {Schopen, Oliver and Narayan, Sriram and Beckmann, Marvin and Najmi, Aezid-Ul-Hassan and Esch, Thomas and Shabani, Bahman}, title = {An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method}, series = {International Journal of Hydrogen Energy}, volume = {58}, journal = {International Journal of Hydrogen Energy}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0360-3199 (print)}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2024.01.218}, pages = {1302 -- 1315}, year = {2024}, abstract = {In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 \% and the cathode side charge transfer resistance decreases by 23 \% after increasing the humidity from 30 \% to 85 \%, while the results of static operation also show an increase of ∼2.2 \% in the voltage output after increasing the relative humidity from 30 \% to 85 \%. In dynamic operation, visible drying effects occur at < 50 \% relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators.}, language = {en} } @unpublished{SchmuellingGuetzlaffCzupalla2024, author = {Schm{\"u}lling, Max and G{\"u}tzlaff, Joel and Czupalla, Markus}, title = {A thermal simulation environment for moving objects on the lunar surface}, doi = {10.21203/rs.3.rs-3902363/v1}, pages = {12 Seiten}, year = {2024}, abstract = {This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented.}, language = {en} } @article{SchopenShahEschetal.2024, author = {Schopen, Oliver and Shah, Neel and Esch, Thomas and Shabani, Bahman}, title = {Critical quantitative evaluation of integrated health management methods for fuel cell applications}, series = {International Journal of Hydrogen Energy}, volume = {70}, journal = {International Journal of Hydrogen Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2024.05.156}, pages = {370 -- 388}, year = {2024}, abstract = {Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system.}, language = {en} } @inproceedings{KahraBreussKleefeldetal.2024, author = {Kahra, Marvin and Breuß, Michael and Kleefeld, Andreas and Welk, Martin}, title = {An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Brunetti, Sara and Frosini, Andrea and Rinaldi, Simone}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-57793-2}, doi = {10.1007/978-3-031-57793-2_25}, pages = {325 -- 337}, year = {2024}, abstract = {Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.}, language = {en} } @article{AyalaHarrisKleefeld2024, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas}, title = {Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary}, series = {Inverse Problems and Imaging}, volume = {18}, journal = {Inverse Problems and Imaging}, number = {3}, publisher = {AIMS}, address = {Springfield}, issn = {1930-8337}, doi = {10.3934/ipi.2023051}, pages = {708 -- 729}, year = {2024}, abstract = {In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.}, language = {en} } @article{ClausnitzerKleefeld2024, author = {Clausnitzer, Julian and Kleefeld, Andreas}, title = {A spectral Galerkin exponential Euler time-stepping scheme for parabolic SPDEs on two-dimensional domains with a C² boundary}, series = {Discrete and Continuous Dynamical Systems - Series B}, volume = {29}, journal = {Discrete and Continuous Dynamical Systems - Series B}, number = {4}, publisher = {AIMS}, address = {Springfield}, issn = {1531-3492}, doi = {10.3934/dcdsb.2023148}, pages = {1624 -- 1651}, year = {2024}, abstract = {We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a C² boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.}, language = {en} } @article{ChwallekNawrathKrastinaetal.2024, author = {Chwallek, Constanze and Nawrath, Lara and Krastina, Anzelika and Bruksle, Ieva}, title = {Supportive research on sustainable entrepreneurship and business practices}, series = {SECA Sustainable Entrepreneurship for Climate Action}, journal = {SECA Sustainable Entrepreneurship for Climate Action}, number = {3}, publisher = {Lapland University of Applied Sciences Ltd}, address = {Rovaniemi}, isbn = {978-952-316-514-4 (pdf)}, issn = {2954-1654 (on-line publication)}, pages = {67 Seiten}, year = {2024}, language = {en} } @inproceedings{BeckerBragard2024, author = {Becker, Tim and Bragard, Michael}, title = {Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578902}, pages = {8 Seiten}, year = {2024}, abstract = {After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown.}, language = {en} } @inproceedings{RuettersBragardDolls2024, author = {R{\"u}tters, Ren{\´e} and Bragard, Michael and Dolls, Sarah}, title = {The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578937}, pages = {5 Seiten}, year = {2024}, abstract = {This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents.}, language = {en} } @inproceedings{KramerBragardRitzetal.2024, author = {Kramer, Pia and Bragard, Michael and Ritz, Thomas and Ferfer, Ute and Schiffers, Tim}, title = {Visualizing, Enhancing and Predicting Students' Success through ECTS Monitoring}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578652}, pages = {5 Seiten}, year = {2024}, abstract = {This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy.}, language = {en} }