@inproceedings{MaurerMiskiwAcostaetal.2023, author = {Maurer, Florian and Miskiw, Kim K. and Acosta, Rebeca Ramirez and Harder, Nick and Sander, Volker and Lehnhoff, Sebastian}, title = {Market abstraction of energy markets and policies - application in an agent-based modeling toolbox}, series = {EI.A 2023: Energy Informatics}, booktitle = {EI.A 2023: Energy Informatics}, editor = {Jorgensen, Bo Norregaard and Pereira da Silva, Luiz Carlos and Ma, Zheng}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-48651-7 (Print)}, doi = {10.1007/978-3-031-48652-4_10}, pages = {139 -- 157}, year = {2023}, abstract = {In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework.}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} } @inproceedings{NierlePieper2023, author = {Nierle, Elisabeth and Pieper, Martin}, title = {Measuring social impacts in engineering education to improve sustainability skills}, series = {European Society for Engineering Education (SEFI)}, booktitle = {European Society for Engineering Education (SEFI)}, doi = {10.21427/QPR4-0T22}, pages = {9 Seiten}, year = {2023}, abstract = {In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison.}, language = {en} } @article{NobisSchmittSchemmetal.2020, author = {Nobis, Moritz and Schmitt, Carlo and Schemm, Ralf and Schnettler, Armin}, title = {Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets}, series = {Energies}, volume = {13}, journal = {Energies}, number = {Art. 2339}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13092339}, pages = {1 -- 35}, year = {2020}, abstract = {The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources.}, language = {en} } @inproceedings{PauksztatKuperjansdeHesselle2006, author = {Pauksztat, Anja and Kuperjans, Isabel and de Hesselle, M.}, title = {Referenzformeln f{\"u}r Energiebedarf und CO2-Emissionen in der Glasindustrie}, series = {Energieeffizienz - Chancen f{\"u}r die Zukunft : Tagung Berlin, 14. und 15. November 2006. - (VDI-Berichte ; 1951)}, booktitle = {Energieeffizienz - Chancen f{\"u}r die Zukunft : Tagung Berlin, 14. und 15. November 2006. - (VDI-Berichte ; 1951)}, edition = {Nichtred. Ms.-Dr.}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091951-5}, pages = {179 -- 190}, year = {2006}, language = {de} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Formeln statt Zahlen : Referenzwerte Formeln zur energetischen Bewertung von Produktionsanlagen}, series = {BWK : das Energie-Fachmagazin}, volume = {57}, journal = {BWK : das Energie-Fachmagazin}, number = {12}, issn = {0006-9612}, pages = {52 -- 55}, year = {2005}, language = {de} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Produktbezogene Referenzwerte f{\"u}r Energieeffizienz und CO2-Emissionen}, series = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, volume = {55}, journal = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, number = {6}, issn = {0013-743X}, pages = {374 -- 376}, year = {2005}, language = {de} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, language = {en} } @book{Pieper2019, author = {Pieper, Martin}, title = {Quantenmechanik : Einf{\"u}hrung in die mathematische Formulierung}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-658-28329-2}, doi = {10.1007/978-3-658-28329-2}, year = {2019}, language = {de} } @book{Pieper2019, author = {Pieper, Martin}, title = {Quantenmechanik: Einf{\"u}hrung in die mathematische Formulierung}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-658-28328-5}, doi = {10.1007/978-3-658-28329-2}, pages = {XI, 33 Seiten}, year = {2019}, language = {de} }