@article{OberlaenderKirchnerKeusgenetal.2015, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.06.126}, pages = {130 -- 136}, year = {2015}, abstract = {The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor's thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).}, language = {en} } @article{OberlaenderMayerGreeffetal.2018, author = {Oberl{\"a}nder, Jan and Mayer, Marlena and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes}, series = {Biosensors and Bioelectronics}, volume = {104}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2017.12.045}, pages = {87 -- 94}, year = {2018}, abstract = {In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.}, language = {en} } @phdthesis{Oflaz2012, author = {Oflaz, Hakan}, title = {Entwicklung eines Prototypen zur Prognose von Fr{\"u}hgeburten : ein biomedizintechnischer Ansatz}, publisher = {Deutsche Zentralbibliothek f{\"u}r Medizin}, address = {K{\"o}ln}, doi = {10.4126/38m-004639208}, year = {2012}, language = {en} } @inproceedings{OlderogMohrBegingetal.2021, author = {Olderog, M. and Mohr, P. and Beging, Stefan and Tsoumpas, C. and Ziemons, Karl}, title = {Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph}, series = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, booktitle = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-7693-2}, doi = {10.1109/NSS/MIC42677.2020.9507901}, pages = {4 Seiten}, year = {2021}, abstract = {In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50\%, while a change of the energy resolution in the absorber layer from 12\% to 4.5\% results in a reduction of 60\%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.}, language = {en} } @article{OliveiraMolinnusBegingetal.2021, author = {Oliveira, Danilo A. and Molinnus, Denise and Beging, Stefan and Siqueira Jr, Jos{\´e} R. and Sch{\"o}ning, Michael Josef}, title = {Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000747}, pages = {1 -- 9}, year = {2021}, abstract = {A new functionalization method to modify capacitive electrolyte-insulator-semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS-nanofilm-enzyme) of around 15\% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS-enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability.}, language = {en} } @incollection{OsterhageBialonskiStanieketal.2008, author = {Osterhage, Hannes and Bialonski, Stephan and Staniek, Matth{\"a}us and Schindler, Kaspar and Wagner, Tobias and Elger, Christian E. and Lehnertz, Klaus}, title = {Bivariate and multivariate time series analysis techniques and their potential impact for seizure prediction}, series = {Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications}, booktitle = {Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {978-3-527-62519-2}, doi = {10.1002/9783527625192.ch15}, pages = {189 -- 208}, year = {2008}, language = {en} } @article{PaczkowskiWeissbeckerSchoeningetal.2011, author = {Paczkowski, Sebastian and Weißbecker, Bernhard and Sch{\"o}ning, Michael Josef and Sch{\"u}tz, Stefan}, title = {Biosensors on the Basis of Insect Olfaction}, series = {Insect biotechnology / Andreas Vilcinskas, ed.}, journal = {Insect biotechnology / Andreas Vilcinskas, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-90-481-9640-1}, pages = {225 -- 240}, year = {2011}, language = {en} } @article{ParlLarueStreunetal.2011, author = {Parl, C. and Larue, H. and Streun, M. and Ziemons, Karl}, title = {Double-side-readout technique for SiPM-matrices}, series = {2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, journal = {2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, issn = {1095-7863}, pages = {1486 -- 1487}, year = {2011}, abstract = {In our case the double-side-method is used to minimize the complexity of a matrix-readout. Here the number of channels is reduced to 2√N̅. It is also possible to benefit from the method in a single pixel readout system. One signal can be used to measure position and energy of the event, the other one can be applied to a fast trigger-circuit at the same time. In a next step we will investigate timing behavior and electrical crosstalk of the circuit.}, language = {en} } @article{Pawelke1980, author = {Pawelke, Siegfried}, title = {Weak smoothness conditions for the uniform convergence of Fourier-Jacobi series}, series = {Functiones et Approximatio. Commentarii Mathematici. 9 (1980)}, journal = {Functiones et Approximatio. Commentarii Mathematici. 9 (1980)}, isbn = {0208-6573}, pages = {9 -- 13}, year = {1980}, language = {en} } @article{Pawelke2000, author = {Pawelke, Siegfried}, title = {Note on Jackson and Bernstein type approximation theorems in the case of approximation by algebraic polynomial in the spaces L and C}, series = {Studia Scientiarum Mathematicarum Hungarica. 36 (2000), H. 3-4}, journal = {Studia Scientiarum Mathematicarum Hungarica. 36 (2000), H. 3-4}, isbn = {0081-6906}, pages = {353 -- 358}, year = {2000}, language = {en} }