@article{StadlerDigelArtmannetal.2008, author = {Stadler, A. M. and Digel, Ilya and Artmann, Gerhard and Embs, Jan P. and Zaccai, Joe and B{\"u}ldt, Georg}, title = {Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature}, series = {Biophysical Journal. 95 (2008), H. 11}, journal = {Biophysical Journal. 95 (2008), H. 11}, isbn = {1542-0086}, pages = {5449 -- 5461}, year = {2008}, language = {en} } @article{StadlerDigelEmbsetal.2009, author = {Stadler, Andreas M. and Digel, Ilya and Embs, Jan P. and Unruh, Tobias and Tehei, M. and Zaccai, G. and B{\"u}ldt, G. and Artmann, Gerhard}, title = {From powder to solution : Hydration dependence of human hemoglobin dynamics correlated to body temperature}, series = {Biophysical Journal. 96 (2009), H. 12}, journal = {Biophysical Journal. 96 (2009), H. 12}, publisher = {Cell Press}, address = {Cambridge, Mass.}, isbn = {0006-3495}, pages = {5073 -- 5081}, year = {2009}, language = {en} } @article{StadlerEmbsDigeletal.2008, author = {Stadler, Andreas M. and Embs, Jan P. and Digel, Ilya and Artmann, Gerhard and Unruh, Tobias and B{\"u}ldt, Georg and Zaccai, Guiseppe}, title = {Cytoplasmic water and hydration layer dynamics in human red blood cells}, series = {Journal of the American Chemical Society. 50 (2008), H. 130}, journal = {Journal of the American Chemical Society. 50 (2008), H. 130}, isbn = {1520-5126}, pages = {16852 -- 16853}, year = {2008}, language = {en} } @inproceedings{StadlerEmbsZerlinetal.2007, author = {Stadler, Andreas M. and Embs, Jan P. and Zerlin, Kay and Digel, Ilya and Artmann, Gerhard and Zaccai, Joe and B{\"u}ldt, Georg}, title = {Temperature transitions of hemoglobin and cytosolic water diffusion in human red blood cells : [poster]}, year = {2007}, abstract = {Background Hemoglobin interactions in red blood cells Hemoglobin dynamics in human red blood cells Diffusion of H2O in red blood cells}, subject = {Erythrozyt}, language = {en} } @article{StadlerGarveyBocahutetal.2012, author = {Stadler, Andreas M. and Garvey, G. J. and Bocahut, A. and Sacquin-Mora, S. and Digel, Ilya and Schneider, G. J. and Natali, F. and Artmann, Gerhard and Zaccai, G.}, title = {Thermal fluctuations of haemoglobin from different species : adaptation to temperature via conformational dynamics}, series = {Journal of the Royal Society Interface}, volume = {9}, journal = {Journal of the Royal Society Interface}, number = {76}, publisher = {The Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2012.0364}, pages = {2845 -- 2855}, year = {2012}, abstract = {Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 {\AA} at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.}, language = {en} } @article{StadlerZerlinDigeletal.2008, author = {Stadler, Andreas M. and Zerlin, Kay and Digel, Ilya and B{\"u}ldt, Georg and Zaccai, Guiseppe and Artmann, Gerhard}, title = {Dynamics and interactions of hemoglobin in red blood cells}, series = {Tissue Engineering Part A. 14 (2008), H. 5}, journal = {Tissue Engineering Part A. 14 (2008), H. 5}, isbn = {1937-3341}, pages = {724 -- 724}, year = {2008}, language = {en} } @article{SteinseiferKashefiHormesetal.2009, author = {Steinseifer, Ulrich and Kashefi, Ali and Hormes, Marcus and Schoberer, Mark and Orlikowsky, Thorsten and Behbahani, Mehdi and Behr, Marek and Schmitz-Rode, Thomas}, title = {Miniaturization of ECMO Systems : Engineering Challenges and Methods}, series = {Artificial Organs. 33 (2009), H. 5}, journal = {Artificial Organs. 33 (2009), H. 5}, isbn = {1525-1594}, pages = {A55 -- A55}, year = {2009}, language = {en} } @article{StreeseKotliarDeiserothetal.2020, author = {Streese, Lukas and Kotliar, Konstantin and Deiseroth, Arne and Infanger, Denis and Gugleta, Konstantin and Schmaderer, Christoph and Hanssen, Henner}, title = {Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial}, series = {Scandinavian Journal of Medicine and Science in Sports}, volume = {30}, journal = {Scandinavian Journal of Medicine and Science in Sports}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1600-0838}, doi = {10.1111/sms.13560}, pages = {272 -- 280}, year = {2020}, abstract = {The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1\%, post: 3.0 ± 2.2\%, P = .018) and AFarea (pre: 32.6 ± 28.4\%*s, post: 37.7 ± 30.6\%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8\%, post: 2.9 ± 1.8\%, P = .254; AFarea, pre: 41.6 ± 28.5\%*s, post: 37.8 ± 27.0\%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk.}, language = {en} } @inproceedings{StreunAlKaddoumParletal.2012, author = {Streun, M. and Al-Kaddoum, R. and Parl, C. and Pietrzyk, U. and Ziemons, Karl and Waasen, S. van}, title = {Simulation studies of optical photons in monolithic block scintillators}, series = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, booktitle = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-0120-6 (electronic ISBN)}, doi = {10.1109/NSSMIC.2011.6154621}, pages = {1380 -- 1382}, year = {2012}, abstract = {The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio.}, language = {en} } @article{StreunBeerHombachetal.2008, author = {Streun, M. and Beer, S. and Hombach, T. and Jahnke, S. and Khodaverdi, M. and Larue, H. and Minwuyelet, S. and Parl, C. and Roeb, G. and Schurr, U. and Ziemons, Karl}, title = {PlanTIS: A positron emission tomograph for imaging 11C transport in plants}, series = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, journal = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, isbn = {1082-3654}, pages = {4110 -- 4112}, year = {2008}, abstract = {Plant growth and transport processes are highly dynamic. They are characterized by plant-internal control processes and by strong interactions with the spatially and temporally varying environment. Analysis of structure- function relations of growth and transport in plants will strongly benefit from the development of non-invasive techniques. PlanTIS (Plant Tomographic Imaging System) is designed for non-destructive 3D-imaging of positron emitting radiotracers. It will permit functional analysis of the dynamics of carbon distribution in plants including bulky organs. It will be applicable for screening transport properties of plants to evaluate e.g. temperature adaptation of genetically modified plants. PlanTIS is a PET scanner dedicated to monitor the dynamics of the 11C distribution within a plant while or after assimilation of 11CO2. Front end electronics and data acquisition architecture of the scanner are based on the ClearPETTM system [1]. Four detector modules form one of two opposing detector blocks. Optionally, a hardware coincidence detection between the blocks can be applied. In general the scan duration is rather long (~ 1 hour) compared to the decay time of 11C (20 min). As a result the count rates can vary over a wide range and accurate dead time correction is necessary.}, language = {en} }