@article{DachwaldSeboldtRichter2006, author = {Dachwald, Bernd and Seboldt, Wolfgang and Richter, L.}, title = {Multiple rendezvous and sample return missions to near-Earth objects using solar sailcraft / Dachwald, B. ; Seboldt, W. ; Richter, L.}, series = {Acta Astronautica. 59 (2006), H. 8-11}, journal = {Acta Astronautica. 59 (2006), H. 8-11}, isbn = {0094-5765}, pages = {768 -- 776}, year = {2006}, language = {en} } @article{DachwaldSeboldtRichter2003, author = {Dachwald, Bernd and Seboldt, Wolfgang and Richter, L.}, title = {Multiple Rendezvous and Sample Return Missions to Near-Earth Asteroids Using Solar Sailcraft}, series = {Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris]}, journal = {Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris]}, publisher = {ESA}, address = {Noordwijk}, isbn = {92-9092-853-0}, pages = {351 -- 358}, year = {2003}, language = {en} } @article{DachwaldTsinas1994, author = {Dachwald, Bernd and Tsinas, L.}, title = {A combined neural and genetic learning algorithm / Tsinas, L. ; Dachwald, B.}, series = {Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence.}, journal = {Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence.}, address = {Orlando, Fl}, isbn = {0-7803-1899-4}, pages = {770 -- 774}, year = {1994}, language = {en} } @article{DachwaldTuryshevDittusetal.2005, author = {Dachwald, Bernd and Turyshev, Slava G. and Dittus, H. and Shao, M. [u.a.]}, title = {Fundamental Physics with the Laser Astrometric Test Of Relativity / S.G. Turyshev ; H. Dittus ; M. Shao ... B.Dachwald ...}, series = {Proceedings of the 39th ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020" : 19 - 21 April 2005, ESTEC, Noordwijk, the Netherlands / European Space Agency. [Comp. by: F. Favata ...] . - (ESA SP ; 588)}, journal = {Proceedings of the 39th ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020" : 19 - 21 April 2005, ESTEC, Noordwijk, the Netherlands / European Space Agency. [Comp. by: F. Favata ...] . - (ESA SP ; 588)}, publisher = {ESA Publ. Div.}, address = {Noordwijk}, isbn = {9290928999}, pages = {8 -- 11}, year = {2005}, language = {en} } @incollection{DachwaldUlamecBiele2013, author = {Dachwald, Bernd and Ulamec, Stephan and Biele, Jens}, title = {Clean in situ subsurface exploration of icy environments in the solar system}, series = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, booktitle = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-6545-0 (Druckausgabe)}, pages = {367 -- 397}, year = {2013}, abstract = {"To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested."}, language = {en} } @incollection{DachwaldUlamecKowalskietal.2023, author = {Dachwald, Bernd and Ulamec, Stephan and Kowalski, Julia and Boxberg, Marc S. and Baader, Fabian and Biele, Jens and K{\"o}mle, Norbert}, title = {Ice melting probes}, series = {Handbook of Space Resources}, booktitle = {Handbook of Space Resources}, editor = {Badescu, Viorel and Zacny, Kris and Bar-Cohen, Yoseph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-97912-6 (Print)}, doi = {10.1007/978-3-030-97913-3_29}, pages = {955 -- 996}, year = {2023}, abstract = {The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests.}, language = {en} } @article{DachwaldUlamecPostbergetal.2020, author = {Dachwald, Bernd and Ulamec, Stephan and Postberg, Frank and Sohl, Frank and Vera, Jean-Pierre de and Christoph, Waldmann and Lorenz, Ralph D. and Hellard, Hugo and Biele, Jens and Rettberg, Petra}, title = {Key technologies and instrumentation for subsurface exploration of ocean worlds}, series = {Space Science Reviews}, volume = {216}, journal = {Space Science Reviews}, number = {Art. 83}, publisher = {Springer}, address = {Dordrecht}, issn = {1572-9672}, doi = {10.1007/s11214-020-00707-5}, pages = {45}, year = {2020}, abstract = {In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter's moon Europa and Saturn's moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, penetrating the thick ice shell with an ice-penetrating probe, and probably diving with an underwater vehicle through dozens of kilometers of water to the ocean floor, to have the chance to find life, if it exists. Technologically, such missions are extremely challenging. The required key technologies include power generation, communications, pressure resistance, radiation hardness, corrosion protection, navigation, miniaturization, autonomy, and sterilization and cleaning. Simpler mission concepts involve impactors and penetrators or - in the case of Enceladus - plume-fly-through missions.}, language = {en} } @article{DachwaldWi2007, author = {Dachwald, Bernd and Wi, Bong}, title = {Solar Sail Kinetic Energy Impactor Trajectory Optimization for an Asteroid-Deflection Mission}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, isbn = {0022-4650}, pages = {755 -- 764}, year = {2007}, language = {en} } @article{DachwaldWie2005, author = {Dachwald, Bernd and Wie, Bong}, title = {Solar Sail Trajectory Optimization for Intercepting, Impacting, and Deflecting Near-Earth Asteroids}, series = {AIAA Guidance, Navigation and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : [San Francisco, California, 15 - 18 August 2005 ; papers]. - (AIAA meeting papers on disc ; [10.]2005,16-17)}, journal = {AIAA Guidance, Navigation and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : [San Francisco, California, 15 - 18 August 2005 ; papers]. - (AIAA meeting papers on disc ; [10.]2005,16-17)}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, isbn = {1-56347-765-3}, pages = {2 CD-ROMs}, year = {2005}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Design concept and modeling of an advanced solar photon thruster}, series = {Advances in the Astronautical Sciences}, booktitle = {Advances in the Astronautical Sciences}, publisher = {American Astronautical Society}, address = {San Diego, Calif.}, isbn = {978-087703554-1}, issn = {00653438}, pages = {723 -- 740}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail.}, language = {en} }