@inproceedings{BuehrigPolaczekRoethBaumeisteretal.2006, author = {B{\"u}hrig-Polaczek, Andreas and R{\"o}th, Thilo and Baumeister, E. and Nowack, N. and S{\"u}ßmann, Torsten}, title = {Hybride Leichtbaustrukturen in Stahlblech-Leichtmetall Verbundguss}, year = {2006}, abstract = {Stahl-Leichtmetall-Hybride mit hohen Leistungspotentialen k{\"o}nnen heute wirtschaftlich abgebildet werden und eignen sich m{\"o}glicherweise auch zum Einsatz in Fahrzeugkarosserien}, subject = {Karosseriebau}, language = {de} } @article{BuehlerChristenKowalskietal.2011, author = {B{\"u}hler, Yves and Christen, Marc and Kowalski, Julia and Bartelt, Perry}, title = {Sensitivity of snow avalanche simulations to digital elevation model quality and resolution}, series = {Annals of Glaciology}, volume = {52}, journal = {Annals of Glaciology}, number = {58}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {1727-5644}, pages = {72 -- 80}, year = {2011}, abstract = {Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations.}, language = {en} } @article{BoernerFunkeHendricketal.2010, author = {B{\"o}rner, Sebastian and Funke, Harald and Hendrick, P. and Recker, E.}, title = {Control system modifications for a hydrogen fuelled gas-turbine}, series = {ISROMAC 13, 13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, US, Apr 4-7, 2010}, journal = {ISROMAC 13, 13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, US, Apr 4-7, 2010}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-617-38848-4}, pages = {665 -- 670}, year = {2010}, language = {en} } @inproceedings{BoernerFunkeHendricketal.2009, author = {B{\"o}rner, Sebastian and Funke, Harald and Hendrick, P. and Recker, E.}, title = {LES of Jets In Cross-Flow and Application to the "Micromix" Hydrogen Combustion}, series = {XIX International Symposium on Air Breathing Engines 2009 (ISABE 2009) : Proceedings of a meeting held 7-11 September 2009, Montreal, Canada}, booktitle = {XIX International Symposium on Air Breathing Engines 2009 (ISABE 2009) : Proceedings of a meeting held 7-11 September 2009, Montreal, Canada}, isbn = {9781615676064}, pages = {1555 -- 1561}, year = {2009}, language = {en} } @phdthesis{Boerner2013, author = {B{\"o}rner, Sebastian}, title = {Optimization and testing of a low NOx hydrogen fuelled gas turbine}, publisher = {Universit{\´e} Libre de Bruxelles}, address = {Bruxelles}, pages = {XVI, 144 S.}, year = {2013}, language = {en} } @article{BoehnischBraunMuscarelloetal.2023, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {A sensitivity study on aeroelastic instabilities of slender wings with a large propeller}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-1893}, pages = {1 -- 14}, year = {2023}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis.}, language = {de} } @article{BoehnischBraunMuscarelloetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {About the wing and whirl flutter of a slender wing-propeller system}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C037542}, pages = {1 -- 14}, year = {2024}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing-propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing-propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing-propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis.}, language = {en} } @article{BecretGrossenTrillaetal.2007, author = {B{\´e}cret, P. and Grossen, J. and Trilla, J. and Robinson, A. and Bosschaerts, W. and Funke, Harald and Hendrick, P.}, title = {Testing and numerical study of a 10 kW hydrogen micro combustor}, series = {International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications <7, 2007, Freiburg, Breisgau> ; PowerMEMS ; 7}, journal = {International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications <7, 2007, Freiburg, Breisgau> ; PowerMEMS ; 7}, pages = {367 -- 370}, year = {2007}, language = {en} } @incollection{BusseEschMuntaniol2015, author = {Busse, Daniel and Esch, Thomas and Muntaniol, Roman}, title = {Thermal management in E-carsharing vehicles - preconditioning concepts of passenger compartments}, series = {E-Mobility in Europe : trends and good practice}, booktitle = {E-Mobility in Europe : trends and good practice}, publisher = {Springer}, address = {Cham [u.a.]}, isbn = {978-3-319-13193-1}, doi = {10.1007/978-3-319-13194-8_18}, pages = {327 -- 343}, year = {2015}, abstract = {The issue of thermal management in electric vehicles includes the topics of drivetrain cooling and heating, interior temperature, vehicle body conditioning and safety. In addition to the need to ensure optimal thermal operating conditions of the drivetrain components (drive motor, battery and electrical components), thermal comfort must be provided for the passengers. Thermal comfort is defined as the feeling which expresses the satisfaction of the passengers with the ambient conditions in the compartment. The influencing factors on thermal comfort are the temperature and humidity as well as the speed of the indoor air and the clothing and the activity of the passengers, in addition to the thermal radiation and the temperatures of the interior surfaces. The generation and the maintenance of free visibility (ice- and moisture-free windows) count just as important as on-demand heating and cooling of the entire vehicle. A Carsharing climate concept of the innovative ec2go vehicle stipulates and allows for only seating areas used by passengers to be thermally conditioned in a close-to-body manner. To enable this, a particular feature has been added to the preconditioning of the Carsharing electric vehicle during the electric charging phase at the parking station.}, language = {en} } @misc{BurlageHoeraufKlandtetal.1998, author = {Burlage, Thomas and H{\"o}rauf, Martin and Klandt, Michael and Wahle, Michael}, title = {Schwingungsd{\"a}mpfer : Offenlegungsschrift}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {14 S. : graph. Darst.}, year = {1998}, language = {de} }