@article{StaatTranKreissig2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Kreißig, R.}, title = {Load bearing capacity of thin shell structures made of elastoplastic material by direct methods}, series = {Technische Mechanik. 28 (2008), H. 3-4}, journal = {Technische Mechanik. 28 (2008), H. 3-4}, pages = {299 -- 309}, year = {2008}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{StaatSponagelNguyen2010, author = {Staat, Manfred and Sponagel, Stefan and Nguyen, Nhu Huynh}, title = {Experiment and material model for soft tissue materials}, series = {Constitutive models for rubber VI : proceedings of the sixth European Conference on Constitutive Models for Rubber, Dresden, Germany, 7 - 10 September 2009 / eds. Gert Heinrich ...}, journal = {Constitutive models for rubber VI : proceedings of the sixth European Conference on Constitutive Models for Rubber, Dresden, Germany, 7 - 10 September 2009 / eds. Gert Heinrich ...}, publisher = {CRC Press}, address = {Boca Raton [u.a.]}, isbn = {978-0-415-56327-7}, pages = {465 -- 470}, year = {2010}, language = {en} } @article{StaatSchwartzLangetal.2003, author = {Staat, Manfred and Schwartz, M. and Lang, H. and Wirtz, K. and Heitzer, M.}, title = {Design by Analysis of Pressure Components by non-linear Optimization}, series = {The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed]}, journal = {The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed]}, publisher = {{\"O}GS, {\"O}sterreichische Gesellschaft f{\"u}r Schweißtechnik}, address = {Wien}, isbn = {3950152814}, pages = {59 -- 65}, year = {2003}, language = {en} } @inproceedings{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, Michael}, title = {Limit and shakedown analysis for plastic design}, year = {1997}, abstract = {Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe-junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix.}, subject = {Einspielen }, language = {en} } @inproceedings{StaatHeitzer2002, author = {Staat, Manfred and Heitzer, Michael}, title = {The restricted influence of kinematic hardening on shakedown loads}, year = {2002}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model.}, subject = {Biomedizinische Technik}, language = {en} } @inproceedings{StaatHeitzer2000, author = {Staat, Manfred and Heitzer, Michael}, title = {Direct static FEM approach to limit and shakedown analysis}, year = {2000}, abstract = {Safety and reliability of structures may be assessed indirectly by stress distributions. Limit and shakedown theorems are simplified but exact methods of plasticity that provide safety factors directly in the loading space. These theorems may be used for a direct definition of the limit state function for failure by plastic collapse or by inadaptation. In a FEM formulation the limit state function is obtained from a nonlinear optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error. Moreover, the direct way leads to highly effective and precise reliability analyses. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis.}, subject = {Einspielen }, language = {en} } @incollection{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, Michael}, title = {Probabilistic limit and shakedown problems}, series = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems}, volume = {15}, booktitle = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems}, editor = {Staat, Manfred and Heitzer, Michael}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {217 -- 268}, year = {2003}, language = {en} } @book{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, Michael}, title = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {2, xiii, 282 Seiten}, year = {2003}, language = {en} } @book{StaatHeitzerYanetal.2000, author = {Staat, Manfred and Heitzer, M. and Yan, Ai-Min and Khoi, Vu Duc and Nguyen, Dang Hung and Valdoire, F. and Lahousse, A.}, title = {Limit Analysis of Defects}, publisher = {Forschungszentrum J{\"u}lich}, address = {J{\"u}lich}, issn = {0944-2952}, pages = {89 S.}, year = {2000}, language = {en} }