@incollection{Eggert2019, author = {Eggert, Mathias}, title = {Big Data Research - How to Structure the Changes of the Past Decade?}, series = {The Art of Structuring}, booktitle = {The Art of Structuring}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-06234-7}, doi = {10.1007/978-3-030-06234-7_26}, pages = {271 -- 281}, year = {2019}, abstract = {In the past decade, many IS researchers focused on researching the phenomenon of Big Data. At the same time, the relevance of data protection gets more attention than ever before. In particular, since the enactment of the European General Data Protection Regulation in May 2018 Information Systems research should provide answers for protecting personal data. The article at hand presents a structuring framework for Big Data research outcome and the consideration of data protection. IS Researchers might use the framework in order to structure Big Data literature and to identify research gaps that should be addressed in the future.}, language = {en} } @article{DotzauerPfeifferLaueretal.2019, author = {Dotzauer, Martin and Pfeiffer, Diana and Lauer, Markus and Pohl, Marcel and Mauky, Eric and B{\"a}r, Katharina and Sonnleitner, Matthias and Z{\"o}rner, Wilfried and Hudde, Jessica and Schwarz, Bj{\"o}rn and Faßauer, Burkhardt and Dahmen, Markus and Rieke, Christian and Herbert, Johannes and Thr{\"a}n, Daniela}, title = {How to measure flexibility - Performance indicators for demand driven power generation from biogas plants}, series = {Renewable Energy}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2018.10.021}, pages = {135 -- 146}, year = {2019}, language = {en} } @article{Delaittre2019, author = {Delaittre, Guillaume}, title = {Telechelic Poly(2-Oxazoline)s}, series = {European Polymer Journal}, journal = {European Polymer Journal}, number = {In Press, Journal Pre-proof, 109281}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2019.109281}, year = {2019}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @incollection{DachwaldOhndorf2019, author = {Dachwald, Bernd and Ohndorf, Andreas}, title = {Global optimization of continuous-thrust trajectories using evolutionary neurocontrol}, series = {Modeling and Optimization in Space Engineering}, booktitle = {Modeling and Optimization in Space Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-10501-3}, doi = {10.1007/978-3-030-10501-3_2}, pages = {33 -- 57}, year = {2019}, abstract = {Searching optimal continuous-thrust trajectories is usually a difficult and time-consuming task. The solution quality of traditional optimal-control methods depends strongly on an adequate initial guess because the solution is typically close to the initial guess, which may be far from the (unknown) global optimum. Evolutionary neurocontrol attacks continuous-thrust optimization problems from the perspective of artificial intelligence and machine learning, combining artificial neural networks and evolutionary algorithms. This chapter describes the method and shows some example results for single- and multi-phase continuous-thrust trajectory optimization problems to assess its performance. Evolutionary neurocontrol can explore the trajectory search space more exhaustively than a human expert can do with traditional optimal-control methods. Especially for difficult problems, it usually finds solutions that are closer to the global optimum. Another fundamental advantage is that continuous-thrust trajectories can be optimized without an initial guess and without expert supervision.}, language = {en} } @article{CornelisGivanoudiYongabietal.2019, author = {Cornelis, Peter and Givanoudi, Stella and Yongabi, Derick and Iken, Heiko and Duw{\´e}, Sam and Deschaume, Olivier and Robbens, Johan and Dedecker, Peter and Bartic, Carmen and W{\"u}bbenhorst, Michael and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method}, series = {Biosensors and Bioelectronics}, volume = {136}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.026}, pages = {97 -- 105}, year = {2019}, language = {en} } @inproceedings{CordesGligorevicBlicharski2019, author = {Cordes, Sven and Gligorevic, Snjezana and Blicharski, Peter}, title = {Analysis of sine precision influence on DOA estimation using the MUSIC algorithm}, series = {2019 20th International Radar Symposium (IRS)}, booktitle = {2019 20th International Radar Symposium (IRS)}, isbn = {978-3-7369-9860-5}, doi = {10.23919/IRS.2019.8768162}, pages = {1 -- 10}, year = {2019}, language = {en} } @article{ClaerFerreinSchiffer2019, author = {Claer, Mario and Ferrein, Alexander and Schiffer, Stefan}, title = {Calibration of a Rotating or Revolving Platform with a LiDAR Sensor}, series = {Applied Sciences}, volume = {Volume 9}, journal = {Applied Sciences}, number = {issue 11, 2238}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app9112238}, pages = {18 Seiten}, year = {2019}, language = {en} } @inproceedings{ChavezBermudezWollert2019, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Gateway for Automation Controllers and Cloud based Voice Recognition Services}, series = {KommA, 10. Jahreskolloquium Kommunikation in der Automation}, booktitle = {KommA, 10. Jahreskolloquium Kommunikation in der Automation}, publisher = {Institut f{\"u}r Automation und Kommunikation}, address = {Magdeburg}, organization = {KommA, 2019, Jahreskolloquium Kommunikation in der Automation, 10., Lemgo, DE, 2019-11-20 - 2019-11-21}, isbn = {978-3-944722-85-6}, pages = {1 -- 8}, year = {2019}, language = {en} }