@article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} } @article{HaegerBongaertsSiegert2022, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent}, series = {Analytical Biochemistry}, journal = {Analytical Biochemistry}, number = {624}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1096-0309}, doi = {10.1016/j.ab.2022.114819}, pages = {Artikel 114819}, year = {2022}, abstract = {An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates.}, language = {en} } @article{WissenbachSixBongaertsetal.1995, author = {Wissenbach, U. and Six, S. and Bongaerts, Johannes and Ternes, D. and Steinwachs, S. and Unden, G.}, title = {A third periplasmic transport system for l-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport}, series = {Molecular microbiology}, volume = {Vol. 17}, journal = {Molecular microbiology}, number = {Iss. 4}, issn = {1365-2958 (E-Journal); 0950-382x (Print)}, pages = {675 -- 686}, year = {1995}, language = {en} } @techreport{HaegerBongaertsSiegert2023, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {Abschlussbericht Teil II: Eingehende Darstellung Neue biobasierte Lipopeptide aus nachhaltiger Produktion (LipoPep)}, pages = {17Seiten}, year = {2023}, language = {de} } @article{UndenBongaerts1997, author = {Unden, Gottfried and Bongaerts, Johannes}, title = {Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors}, series = {Biochimica et biophysica acta (BBA) - Bioenergetics}, volume = {Vol. 1320}, journal = {Biochimica et biophysica acta (BBA) - Bioenergetics}, number = {Iss. 3}, issn = {1879-2650 (E-Journal); 0005-2728 (Print)}, pages = {217 -- 234}, year = {1997}, language = {en} } @article{HandtkeSchroeterJuergenetal.2014, author = {Handtke, Stefan and Schroeter, Rebecca and J{\"u}rgen, Britta and Methling, Karen and Schl{\"u}ter, Rabea and Albrecht, Dirk and Hijum, Sacha A. F. T. van and Bongaerts, Johannes and Maurer, Karl-Heinz and Lalk, Michael and Schweder, Thomas and Hecker, Michael and Voigt, Birgit}, title = {Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress}, series = {PLOS one}, volume = {9}, journal = {PLOS one}, number = {1}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0085625}, pages = {e85625}, year = {2014}, abstract = {Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus.}, language = {en} } @article{HandtkeVollandMethlingetal.2014, author = {Handtke, Stefan and Volland, Sonja and Methling, Karen and Albrecht, Dirk and Becher, D{\"o}rte and Nehls, Jenny and Bongaerts, Johannes and Maurer, Karl-Heinz and Lalk, Michael and Liesegang, Heiko and Voigt, Birgit and Daniel, Rolf and Hecker, Michael}, title = {Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - An omics-based approach}, series = {Journal of Biotechnology}, journal = {Journal of Biotechnology}, number = {192(A)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2014.08.028}, pages = {204 -- 214}, year = {2014}, abstract = {Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43\% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.}, language = {en} } @article{JossekBongaertsSprenger2001, author = {Jossek, Ralf and Bongaerts, Johannes and Sprenger, Georg A.}, title = {Characterization of a new feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase AroF of Escherichia coli}, series = {FEMS microbiology letters}, volume = {Vol. 202}, journal = {FEMS microbiology letters}, number = {Iss. 1}, issn = {1574-6968}, pages = {145 -- 148}, year = {2001}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{KueppersSteffenHellmuthetal.2014, author = {K{\"u}ppers, Tobias and Steffen, Victoria and Hellmuth, Hendrik and O'Connell, Timothy and Bongaerts, Johannes and Maurer, Karl-Heinz and Wiechert, Wolfgang}, title = {Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer}, series = {Microbial cell factories}, volume = {13}, journal = {Microbial cell factories}, publisher = {BioMed Central}, address = {London}, issn = {1475-2859 (E-Journal)}, doi = {10.1186/1475-2859-13-46}, pages = {Article No. 46}, year = {2014}, language = {en} }