@inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020}, booktitle = {Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, abstract = {The paper presents a method for the quantitative assessment of choroidal blood flow using an OCT-A system. The developed technique for processing of OCT-A scans is divided into two stages. At the first stage, the identification of the boundaries in the selected portion was performed. At the second stage, each pixel mark on the selected layer was represented as a volume unit, a voxel, which characterizes the region of moving blood. Three geometric shapes were considered to represent the voxel. On the example of one OCT-A scan, this work presents a quantitative assessment of the blood flow index. A possible modification of two-stage algorithm based on voxel scan processing is presented.}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @article{SchollPalmLehmannetal.1998, author = {Scholl, Ingrid and Palm, Christoph and Lehmann, Thomas and Spitzer, Klaus}, title = {Quantitative Farbmessung in laryngoskopischen Bildern. Palm, C; Scholl, I; Lehmann, TM; Spitzer, K.}, series = {Bildverarbeitung f{\"u}r die Medizin 1998. Hrsg.: Thomas Lehmann ...}, journal = {Bildverarbeitung f{\"u}r die Medizin 1998. Hrsg.: Thomas Lehmann ...}, publisher = {Springer}, address = {Berlin}, isbn = {3-540-63885-7}, pages = {412 -- 416}, year = {1998}, language = {en} } @article{HasegawaKapelyukhTaharaetal.2011, author = {Hasegawa, Maki and Kapelyukh, Yury and Tahara, Harunobu and Seibler, Jost and Rode, Anja and Krueger, Sylvia and Lee, Dongtao N. and Wolf, C. Roland and Scheer, Nico}, title = {Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line}, series = {Molecular Pharmacology}, volume = {80}, journal = {Molecular Pharmacology}, number = {33}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-0111}, doi = {10.1124/mol.111.071845}, pages = {518 -- 528}, year = {2011}, language = {en} } @article{MonakhovaSobolevaFedotovaetal.2022, author = {Monakhova, Yulia and Soboleva, Polina M. and Fedotova, Elena S. and Musina, Kristina T. and Burmistrova, Natalia A.}, title = {Quantum chemical calculations of IR spectra of heparin disaccharide subunits}, series = {Computational and Theoretical Chemistry}, volume = {1217}, journal = {Computational and Theoretical Chemistry}, number = {Article number: 113891}, publisher = {Elsevier}, address = {New York, NY}, isbn = {2210-271X}, doi = {10.1016/j.comptc.2022.113891}, year = {2022}, abstract = {Heparin is a natural polysaccharide, which plays essential role in many biological processes. Alterations in building blocks can modify biological roles of commercial heparin products, due to significant changes in the conformation of the polymer chain. The variability structure of heparin leads to difficulty in quality control using different analytical methods, including infrared (IR) spectroscopy. In this paper molecular modelling of heparin disaccharide subunits was performed using quantum chemistry. The structural and spectral parameters of these disaccharides have been calculated using RHF/6-311G. In addition, over-sulphated chondroitin sulphate disaccharide was studied as one of the most widespread contaminants of heparin. Calculated IR spectra were analyzed with respect to specific structure parameters. IR spectroscopic fingerprint was found to be sensitive to substitution pattern of disaccharide subunits. Vibrational assignments of calculated spectra were correlated with experimental IR spectral bands of native heparin. Chemometrics was used to perform multivariate analysis of simulated spectral data.}, language = {en} } @article{SchaeferShaoScholletal.1995, author = {Sch{\"a}fer, Horst and Shao, Hua and Scholl, W. and Hommel, D. (u.a.)}, title = {Quantum Corrections to Magnetotransport in n-ZnSe Grown by MBE}, year = {1995}, language = {en} } @article{SchaeferSchollGerschuetzetal.1995, author = {Sch{\"a}fer, Horst and Scholl, S. and Gersch{\"u}tz, F. and Fischer, A.}, title = {Quantum Hall Effect in CdTe/Cd 1-X MgX Te Heterostructures}, series = {Solid State Communications. 94 (1995), H. 11}, journal = {Solid State Communications. 94 (1995), H. 11}, isbn = {0038-1098}, pages = {935 -- 938}, year = {1995}, language = {en} } @article{SchaeferShaoGerschuetzetal.1998, author = {Sch{\"a}fer, Horst and Shao, H. and Gersch{\"u}tz, J. and Scholl, S. (u.a.)}, title = {Quantum Interference Effects in Highly Doped n-ZnSe Epitaxy Layers Grown by MBE}, series = {physica status solidi (b). 206 (1998), H. 2}, journal = {physica status solidi (b). 206 (1998), H. 2}, isbn = {0370-1972}, pages = {575 -- 582}, year = {1998}, language = {en} } @book{Pieper2021, author = {Pieper, Martin}, title = {Quantum mechanics: Introduction to mathematical formulation}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-32644-9}, doi = {10.1007/978-3-658-32645-6}, pages = {XIII, 33}, year = {2021}, abstract = {Anyone who has always wanted to understand the hieroglyphs on Sheldon's blackboard in the TV series The Big Bang Theory or who wanted to know exactly what the fate of Schr{\"o}dinger's cat is all about will find a short, descriptive introduction to the world of quantum mechanics in this essential. The text particularly focuses on the mathematical description in the Hilbert space. The content goes beyond popular scientific presentations, but is nevertheless suitable for readers without special prior knowledge thanks to the clear examples.}, language = {en} }