@inproceedings{GellertParkButenweg2010, author = {Gellert, Christoph and Park, Jin and Butenweg, Christoph}, title = {Seismic safety verification of masonry structures}, series = {Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universit{\"a}t Dresden]. Ed. by: Wolfram J{\"a}ger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11)}, booktitle = {Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universit{\"a}t Dresden]. Ed. by: Wolfram J{\"a}ger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11)}, publisher = {ARGE 8IMC Dresden}, address = {Radebeul}, organization = {International Masonry Conference <8, 2010, Dresden>}, isbn = {978-3-00-031381-3}, pages = {813 -- 822}, year = {2010}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @inproceedings{ChurilovDumovaJovanoskaButenweg2013, author = {Churilov, Sergej and Dumova-Jovanoska, Elena and Butenweg, Christoph}, title = {Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets}, series = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, booktitle = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, editor = {Adam, Christoph and Heuer, Rudolf and Lenhardt, Wolfgang and Schranz, Christian}, isbn = {978-3-902749-04-8}, year = {2013}, abstract = {A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia.}, language = {en} } @inproceedings{KuhlmannButenwegLopezetal.2004, author = {Kuhlmann, Wolfram and Butenweg, Christoph and Lopez, Marijen and Fernandez, Sebastian}, title = {Seismic vulnerability assessment of the historic Aachen Cathedral}, series = {Conference proceedings / 13th World Conference on Earthquake Engineering [Vancouver, British Columbia, Canada, August 1 - 6, 2004] / [hosted by CAEE/ACGP, Canadian Association for Earthquake Engineering]}, booktitle = {Conference proceedings / 13th World Conference on Earthquake Engineering [Vancouver, British Columbia, Canada, August 1 - 6, 2004] / [hosted by CAEE/ACGP, Canadian Association for Earthquake Engineering]}, publisher = {CAEE}, address = {Vancouver}, organization = {World Conference on Earthquake Engineering <13, 2004, Vancouver>}, pages = {1 -- 14}, year = {2004}, language = {en} } @inproceedings{RenaultButenwegMistler2005, author = {Renault, Philippe and Butenweg, Christoph and Mistler, Michael}, title = {Seismic vulnerability assessment system for bridges}, series = {Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping}, booktitle = {Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping}, publisher = {Civil-Comp Press}, address = {Stirling}, organization = {International Conference on Civil, Structural and Environmental Engineering Computing <10, 2005, Rome>}, isbn = {1-905088-00-0}, pages = {1 -- 14}, year = {2005}, language = {en} } @article{GivanoudiCornelisRasschaertetal.2021, author = {Givanoudi, Stella and Cornelis, Peter and Rasschaert, Geertrui and Wackers, Gideon and Iken, Heiko and Rolka, David and Yongabi, Derick and Robbens, Johan and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source}, series = {Sensors and Actuators B: Chemical}, journal = {Sensors and Actuators B: Chemical}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2021.129484}, pages = {Article 129484}, year = {2021}, language = {en} } @article{KotterLintzTurek1992, author = {Kotter, Michael and Lintz, Hans-G{\"u}nther and Turek, Thomas}, title = {Selective catalytic reduction of nitrogen oxide by use of the Ljungstroem air heater as reactor : a case study}, series = {Chemical engineering science . 47 (1992), H. 9-11}, journal = {Chemical engineering science . 47 (1992), H. 9-11}, isbn = {0009-2509}, pages = {2763 -- 2768}, year = {1992}, language = {en} } @article{HoetterFateriGebhardt2012, author = {H{\"o}tter, Jan-Steffen and Fateri, Miranda and Gebhardt, Andreas}, title = {Selective laser melting of metals: desktop machines open up new chances even for small companies}, series = {Advanced materials research}, volume = {622-623}, journal = {Advanced materials research}, publisher = {Trans Tech Publ.}, address = {Baech}, issn = {1662-8985 (E-Journal); 1022-6680 (Print)}, doi = {10.4028/www.scientific.net/AMR.622-623.461}, pages = {461 -- 465}, year = {2012}, abstract = {Additive manufacturing (AM) of metal parts by using Selective Laser Melting (SLM) has become a powerful tool mostly in the area of automotive, aerospace engineering and others. Especially in the field of dentistry, jewelry and related branches that require individualized or even one-of-a-kind products, the direct digital manufacturing process opens up new ways of design and manufacturing. In these fields, mostly small and medium sized businesses (SME) are operating which do not have sufficient human and economic resources to invest in this technology. But to stay competitive, the application of AM can be regarded as a necessity. In this situation a new desktop machine (Realizer SLM 50) was introduced that cost about 1/3 of a shop floor SLM machine and promises small quality parts. To find out whether the machine really is an alternative for SMEs the University of Applied Science, Aachen, Germany, designed, build and optimized typical parts from the dentistry and the jewelry branches using CoCr and silver material, the latter being new with this application. The paper describes the SLM procedure and how to find and optimize the most important parameters. The test is accompanied by digital simulation in order to verify the build parameters and to plan future builds. The procedure is shown as well as the resulting parts made from CoCr and silver material.}, language = {en} } @article{FateriGebhardt2015, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Selective Laser Melting of Soda-Lime Glass Powder}, series = {International Journal of Applied Ceramic Technology}, volume = {12}, journal = {International Journal of Applied Ceramic Technology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1744-7402}, doi = {10.1111/ijac.12338}, pages = {53 -- 61}, year = {2015}, language = {en} } @article{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Selective Laser Melting of the Eutectic Silver-Copper Alloy Ag 28 wt \% Cu}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {13}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, issn = {1614-0923}, url = {http://nbn-resolving.de/nbn:de:0009-2-44141}, year = {2016}, abstract = {The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. \% Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.}, language = {en} }