@article{HacklBuessKammerlohretal.2021, author = {Hackl, Michael and Buess, Eduard and Kammerlohr, Sandra and Nacov, Julia and Staat, Manfred and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model}, series = {The american journal of sports medicine}, volume = {49}, journal = {The american journal of sports medicine}, number = {12}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211031506}, pages = {3212 -- 3217}, year = {2021}, abstract = {Background: Additional stabilization of the "comma sign" in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign-directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome.}, language = {en} } @inproceedings{DuongJungFrotscheretal.2016, author = {Duong, Minh Tuan and Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {A 3D electromechanical FEM-based model for cardiac tissue}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} } @inproceedings{BhattaraiFrotscherSoraetal.2014, author = {Bhattarai, Aroj and Frotscher, Ralf and Sora, M.-C. and Staat, Manfred}, title = {A 3D finite element model of the female pelvic floor for the reconstruction of urinary incontinence}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @article{BhattaraiStaat2019, author = {Bhattarai, Aroj and Staat, Manfred}, title = {A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse}, series = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, publisher = {Taylor \& Francis}, address = {London}, issn = {2168-1171}, doi = {10.1080/21681163.2019.1670095}, year = {2019}, language = {en} } @inproceedings{DuongStaat2014, author = {Duong, Minh Tuan and Staat, Manfred}, title = {A face-based smoothed finite element method for hyperelastic models and tissue growth}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @article{GossmannThomasHorvathetal.2020, author = {Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {A higher-throughput approach to investigate cardiac contractility in vitro under physiological mechanical conditions}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {105}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article 106843}, publisher = {Elsevier}, address = {New York, NY}, doi = {10.1016/j.vascn.2020.106843}, year = {2020}, language = {en} } @article{NguyenRaatschenStaat2010, author = {Nguyen, N.-H. and Raatschen, Hans-J{\"u}rgen and Staat, Manfred}, title = {A hyperelastic model of biological tissue materials in tubular organs}, pages = {1 -- 12}, year = {2010}, language = {en} } @inproceedings{TranStaatStavroulakis2014, author = {Tran, Ngoc Trinh and Staat, Manfred and Stavroulakis, G. E.}, title = {A multicriteria method for truss optimization}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @article{LeschingerBirgelHackletal.2019, author = {Leschinger, Tim and Birgel, Stefan and Hackl, Michael and Staat, Manfred and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {A musculoskeletal shoulder simulation of moment arms and joint reaction forces after medialization of the supraspinatus footprint in rotator cuff repair}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {Early view}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/10255842.2019.1572749}, year = {2019}, language = {en} }