@article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} } @article{KuperjansStarkeEsseretal.2000, author = {Kuperjans, Isabel and Starke, M. and Esser, J. and [u.a.],}, title = {Analyse und Konzeption von Energieanlagen unter {\"o}kologischen, wirtschaftlichen und technischen Gesichtspunkten}, series = {WLB : Umwelttechnik f{\"u}r Industrie und Kommune}, volume = {44}, journal = {WLB : Umwelttechnik f{\"u}r Industrie und Kommune}, number = {11/12}, issn = {0341-2679}, pages = {26 -- 29}, year = {2000}, language = {de} } @incollection{KruskaKuperjans1999, author = {Kruska, Martin and Kuperjans, Isabel}, title = {An{\´a}lisis Thermodin{\´a}micos : [Cap{\´i}tulo 3.3]}, series = {Uso racional de energ{\´i}a : eficiencia energ{\´e}tica y energ{\´i}as renovables. - (Manual para consultores y expertos)}, booktitle = {Uso racional de energ{\´i}a : eficiencia energ{\´e}tica y energ{\´i}as renovables. - (Manual para consultores y expertos)}, publisher = {Ministerio de Energ{\´i}a y Minas}, address = {Lima}, pages = {3.3-1 -- 3.3-15}, year = {1999}, language = {es} } @inproceedings{KasperSchiffelsKrafftetal.2016, author = {Kasper, Katharina and Schiffels, Johannes and Krafft, Simone and Kuperjans, Isabel and Elbers, Gereon and Selmer, Thorsten}, title = {Biogas Production on Demand Regulated by Butyric Acid Addition}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, volume = {32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012009}, pages = {012009/1 -- 012009/4}, year = {2016}, language = {en} } @article{HoffstadtPohenDickeetal.2020, author = {Hoffstadt, Kevin and Pohen, Gino D. and Dicke, Max D. and Paulsen, Svea and Krafft, Simone and Zang, Joachim W. and Fonseca-Zang, Warde A. da and Leite, Athaydes and Kuperjans, Isabel}, title = {Challenges and prospects of biogas from energy cane as supplement to bioethanol production}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10060821}, year = {2020}, abstract = {Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27\% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production.}, language = {en} } @inproceedings{KasparGroebelKuperjansetal.2013, author = {Kaspar, K. and Groebel, Simone and Kuperjans, Isabel and Dielmann, Klaus-Peter and Selmer, Thorsten}, title = {Charakterisierung der Bioz{\"o}nose von Biogasfermentern in Abh{\"a}ngigkeit verschiedener Substrate}, series = {Biogas 2013 : 6. Innovationskongress, 23. - 24.05.2013, Osnabr{\"u}ck, Tagungsband}, booktitle = {Biogas 2013 : 6. Innovationskongress, 23. - 24.05.2013, Osnabr{\"u}ck, Tagungsband}, publisher = {Profair Consult+Project}, address = {Hildesheim}, issn = {978-3-9813776-3-7}, pages = {69 -- 74}, year = {2013}, language = {de} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, language = {en} } @article{RuppHandschuhRiekeetal.2019, author = {Rupp, Matthias and Handschuh, Nils and Rieke, Christian and Kuperjans, Isabel}, title = {Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany}, series = {Applied Energy}, volume = {237}, journal = {Applied Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2019.01.059}, pages = {618 -- 634}, year = {2019}, language = {en} } @article{HoffstadtCheenakulaNikolauszetal.2023, author = {Hoffstadt, Kevin and Cheenakula, Dheeraja and Nikolausz, Marcell and Krafft, Simone and Harms, Hauke and Kuperjans, Isabel}, title = {Design and construction of a new reactor for flexible biomethanation of hydrogen}, series = {Fermentation}, volume = {9}, journal = {Fermentation}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2311-5637}, doi = {10.3390/fermentation9080774}, pages = {1 -- 16}, year = {2023}, abstract = {The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29\%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h-1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested.}, language = {en} }