@book{Hallmann2015, author = {Hallmann, Willi}, title = {(Meine) Erinnerungen an Jesco von Puttkamer : zusammengestellt anl{\"a}sslich des Todes von Jesco von Puttkamer am 27. Dezember 2012}, publisher = {Pro BUSINESS digital printing Deutschlang GmbH}, address = {Berlin}, isbn = {978-3-86460-271-9 ; 3-86460-271-8}, pages = {178 Seiten}, year = {2015}, language = {de} } @article{RiglingBiglerEilmannetal.2012, author = {Rigling, Andreas and Bigler, Christof and Eilmann, Britta and Feldmeyer-Christe, Elisabeth and Gimmi, Urs and Ginzler, Christian and Graf, Ulrich and Mayer, Phillip and Vacchiano, Giorgio and Weber, Pascal and Wohlgemuth, Thomas and zweifel, Roman and Dobbertin, Matthias}, title = {Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests}, series = {Global Change Biology}, volume = {19}, journal = {Global Change Biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1354-1013 (Print)}, doi = {10.1111/gcb.12038}, pages = {229 -- 240}, year = {2012}, abstract = {An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner-Alpine regions, the species composition in low elevation forests is changing: The sub-boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub-Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger-scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed-effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small-diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.}, language = {en} } @article{EilmannZweifelBuchmannetal.2011, author = {Eilmann, Britta and Zweifel, Roman and Buchmann, Nina and Graf Pannatier, Elisabeth and Rigling, Andreas}, title = {Drought alters timing, quantity, and quality of wood formation in Scots pine}, series = {Journal of Experimental Botany}, volume = {62}, journal = {Journal of Experimental Botany}, number = {8}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1460-2431 (Online)}, doi = {10.1093/jxb/erq443}, pages = {2763 -- 2771}, year = {2011}, language = {en} } @article{LevesqueSaurerSiegwolfetal.2013, author = {L{\´e}vesque, Mathieu and Saurer, Matthias and Siegwolf, Rolf and Eilmann, Britta and Brang, Peter and Bugmann, Harald and Rigling, Andreas}, title = {Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch}, series = {Global Change Biology}, volume = {19}, journal = {Global Change Biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1365-2486 (Online)}, doi = {10.1111/gcb.12268}, pages = {3184 -- 3199}, year = {2013}, language = {en} } @article{EilmannZweifelBuchmannetal.2009, author = {Eilmann, Britta and Zweifel, Roman and Buchmann, Nina and Fonti, Patrick and Rigling, Andreas}, title = {Drought-induced adaptation of the xylem in Scots pine and pubescent oak}, series = {Tree Physiology}, volume = {29}, journal = {Tree Physiology}, number = {8}, publisher = {Heron}, address = {Victoria, BC}, issn = {0829-318X (Print)}, doi = {10.1093/treephys/tpp035}, pages = {1011 -- 1020}, year = {2009}, language = {en} } @article{DobbertinEilmannBleuleretal.2010, author = {Dobbertin, Matthias and Eilmann, Britta and Bleuler, Peter and Giuggiola, Arnaud and Graf Pannatier, Elisabeth and Landolt, Werner and Schleppi, Patrick and Rigling, Andreas}, title = {Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest}, series = {Tree Physiology}, volume = {30}, journal = {Tree Physiology}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1758-4469 (Online)}, doi = {10.1093/treephys/tpp123}, pages = {346 -- 360}, year = {2010}, abstract = {In Valais, Switzerland, Scots pines (Pinus sylvestris L.) are declining, mainly following drought. To assess the impact of drought on tree growth and survival, an irrigation experiment was initiated in 2003 in a mature pine forest, approximately doubling the annual precipitation. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Seven irrigated and six control trees were felled in 2006, and needles, stem discs and branches were taken for growth analysis. Irrigation in 2004 and 2005, both with below-average precipitation, increased needle size, area and mass, stem growth and, with a 1-year delay, shoot length. This led to a relative decrease in tree crown transparency (-14\%) and to an increase in stand LAI (+20\%). Irrigation increased needle length by 70\%, shoot length by 100\% and ring width by 120\%, regardless of crown transparency. Crown transparency correlated positively with mean needle size, shoot length and ring width and negatively with specific leaf area. Trees with high crown transparency (low growth, short needles) experienced similar increases in needle mass and growth with irrigation than trees with low transparency (high growth, long needles), indicating that seemingly declining trees were able to 'recover' when water supply became sufficient. A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees.}, language = {en} } @article{FontiEilmannGarciaGonzalezetal.2009, author = {Fonti, Patrick and Eilmann, Britta and Garc{\´i}a-Gonz{\´a}lez, Ignacio and von Arx, Georg}, title = {Expeditious building of ring-porous earlywood vessel chronologies without loosing signal information}, series = {Trees : structure and function}, volume = {23}, journal = {Trees : structure and function}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {0931-1890 (Print)}, doi = {10.1007/s00468-008-0310-z}, pages = {665 -- 671}, year = {2009}, language = {en} } @article{EilmannBuchmannSiegwolfetal.2010, author = {Eilmann, Britta and Buchmann, Nina and Siegwolf, Rolf and Saurer, Matthias and Cherubini, Paolo and Rigling, Andreas}, title = {Fast response of Scots pine to improved water availability reflected in tree-ring width and δ13C}, series = {Plant, Cell and Environment}, volume = {33}, journal = {Plant, Cell and Environment}, number = {8}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1365-3040 (Online)}, doi = {10.1111/j.1365-3040.2010.02153.x}, pages = {1351 -- 1360}, year = {2010}, abstract = {Drought-induced forest decline, like the Scots pine mortality in inner-Alpine valleys, will gain in importance as the frequency and severity of drought events are expected to increase. To understand how chronic drought affects tree growth and tree-ring δ13C values, we studied mature Scots pine in an irrigation experiment in an inner-Alpine valley. Tree growth and isotope analyses were carried out at the annual and seasonal scale. At the seasonal scale, maximum δ13C values were measured after the hottest and driest period of the year, and were associated with decreasing growth rates. Inter-annual δ13C values in early- and latewood showed a strong correlation with annual climatic conditions and an immediate decrease as a response to irrigation. This indicates a tight coupling between wood formation and the freshly produced assimilates for trees exposed to chronic drought. This rapid appearance of the isotopic signal is a strong indication for an immediate and direct transfer of newly synthesized assimilates for biomass production. The fast appearance and the distinct isotopic signal suggest a low availability of old stored carbohydrates. If this was a sign for C-storage depletion, an increasing mortality could be expected when stressors increase the need for carbohydrate for defence, repair or regeneration.}, language = {en} } @article{FeichtingerEilmannBuchmannetal.2014, author = {Feichtinger, Linda M. and Eilmann, Britta and Buchmann, Nina and Rigling, Andreas}, title = {Growth adjustments of conifers to drought and to century-long irrigation}, series = {Forest Ecology and Management}, volume = {2014}, journal = {Forest Ecology and Management}, number = {334}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7042 (Online)}, doi = {10.1016/j.foreco.2014.08.008}, pages = {96 -- 105}, year = {2014}, abstract = {Our knowledge on tree responses to drought is mainly based on short-term manipulation experiments which do not capture any possible long-term adjustments in this response. Therefore, historical water channels in inner-Alpine dry valleys were used as century-long irrigation experiments to investigate adjustments in tree growth to contrasting water supply. This involved quantifying the tree-ring growth of irrigated and non-irrigated (control) Scots pine (Pinus sylvestris L.) in Valais (Switzerland), as well as European larch (Larix decidua Mill.) and black pine (Pinus nigra Arnold) in Vinschgau (Italy). Furthermore, the adjustments in radial growth of Scots pine and European larch to an abrupt stop in irrigation were analyzed. Irrigation promoted the radial growth of all tree species investigated compared to the control: (1) directly through increased soil water availability, and (2) indirectly through increased soil nutrients and humus contents in the irrigated plots. Irrigation led to a full elimination of growth responses to climate for European larch and black pine, but not for Scots pine, which might become more sensitive to drought with increasing tree size in Valais. For the control trees, the response of the latewood increment to water availability in July/August has decreased in recent decades for all species, but increased in May for Scots pine only. The sudden irrigation stop caused a drop in radial growth to a lower level for Scots pine or similar level for larch compared to the control for up to ten years. However, both tree species were then able to adjust to the new conditions and subsequently grew with similar (Scots pine) or even higher growth rates (larch) than the control. To estimate the impact of climate change on future forest development, the duration of manipulation experiments should be on longer time scales in order to capture adjustment processes and feedback mechanisms of forest ecosystems.}, language = {en} } @article{EilmannWeberRiglingetal.2006, author = {Eilmann, Britta and Weber, Pascale and Rigling, Andreas and Eckstein, Dieter}, title = {Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland}, series = {Dendrochronologia}, volume = {23}, journal = {Dendrochronologia}, number = {3}, issn = {1612-0051 (Online)}, doi = {doi:10.1016/j.dendro.2005.10.002}, pages = {121 -- 132}, year = {2006}, language = {en} }