@incollection{FissabreWilson2016, author = {Fissabre, Anke and Wilson, Ariane}, title = {"Lehmbaupropaganda" : On the tradition of earth building literature}, series = {Earth Construction and Tradition. Vol. I}, booktitle = {Earth Construction and Tradition. Vol. I}, editor = {Feiglstorfer, Hubert}, publisher = {IVA Institut f{\"u}r vergleichende Architekturforschung}, address = {Wien}, isbn = {978-3-900265-34-2}, pages = {47 -- 69}, year = {2016}, language = {en} } @article{SteinbauerFerrein2016, author = {Steinbauer, Gerald and Ferrein, Alexander}, title = {20 Years of RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0442-z}, pages = {221 -- 224}, year = {2016}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {20 Years of RoboCup - A Subjective Retrospection}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0449-5}, pages = {225 -- 232}, year = {2016}, abstract = {This summer, RoboCup competitions were held for the 20th time in Leipzig, Germany. It was the second time that RoboCup took place in Germany, 10 years after the 2006 RoboCup in Bremen. In this article, we give an overview on the latest developments of RoboCup and what happened in the different leagues over the last decade. With its 20th edition, RoboCup clearly is a success story and a role model for robotics competitions. From our personal view point, we acknowledge this by giving a retrospection about what makes RoboCup such a success.}, language = {en} } @book{GebhardtKesslerThurn2016, author = {Gebhardt, Andreas and Kessler, Julia and Thurn, Laura}, title = {3D-Drucken: Grundlagen und Anwendungen des additive manufacturing (AM)}, edition = {2., neu bearbeitete und erweiterte Auflage}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-44672-4}, doi = {10.3139/9783446448452}, pages = {XVI, 218 Seiten}, year = {2016}, language = {de} } @inproceedings{DuongJungFrotscheretal.2016, author = {Duong, Minh Tuan and Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {A 3D electromechanical FEM-based model for cardiac tissue}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} } @article{ScheerWilson2016, author = {Scheer, Nico and Wilson, Ian D.}, title = {A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity}, series = {Drug Discovery Today}, volume = {21}, journal = {Drug Discovery Today}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-6446}, doi = {10.1016/j.drudis.2015.09.002}, pages = {250 -- 263}, year = {2016}, abstract = {Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.}, language = {en} } @inproceedings{RauschLeiseEdereretal.2016, author = {Rausch, Lea and Leise, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem}, series = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, booktitle = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, editor = {Papadrakakis, M. and Ppadopoulos, V. and Stefanou, G. and Plevris, V.}, isbn = {978-618-82844-0-1}, pages = {8509 -- 8527}, year = {2016}, abstract = {Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art.}, language = {en} } @article{WeberArentMuenchetal.2016, author = {Weber, Tobias and Arent, Jan-Christoph and M{\"u}nch, Lukas and Duhovic, Miro and Balvers, Johannes M.}, title = {A fast method for the generation of boundary conditions for thermal autoclave simulation}, series = {Composites Part A}, volume = {88}, journal = {Composites Part A}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-835X}, doi = {10.1016/j.compositesa.2016.05.036}, pages = {216 -- 225}, year = {2016}, abstract = {Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization.}, language = {en} } @article{KosterScheidweilerTieves2016, author = {Koster, Arie and Scheidweiler, Robert and Tieves, Martin}, title = {A flow based pruning scheme for enumerative equitable coloring algorithms}, series = {A flow based pruning scheme for enumerative equitable coloring algorithms}, journal = {A flow based pruning scheme for enumerative equitable coloring algorithms}, doi = {10.48550/arXiv.1607.08754}, pages = {1 -- 30}, year = {2016}, abstract = {An equitable graph coloring is a proper vertex coloring of a graph G where the sizes of the color classes differ by at most one. The equitable chromatic number is the smallest number k such that G admits such equitable k-coloring. We focus on enumerative algorithms for the computation of the equitable coloring number and propose a general scheme to derive pruning rules for them: We show how the extendability of a partial coloring into an equitable coloring can be modeled via network flows. Thus, we obtain pruning rules which can be checked via flow algorithms. Computational experiments show that the search tree of enumerative algorithms can be significantly reduced in size by these rules and, in most instances, such naive approach even yields a faster algorithm. Moreover, the stability, i.e., the number of solved instances within a given time limit, is greatly improved. Since the execution of flow algorithms at each node of a search tree is time consuming, we derive arithmetic pruning rules (generalized Hall-conditions) from the network model. Adding these rules to an enumerative algorithm yields an even larger runtime improvement.}, language = {en} } @article{OrzadaLaddBitz2016, author = {Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information}, series = {Magnetic Resonance in Medicine}, volume = {78}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.26398}, pages = {805 -- 811}, year = {2016}, abstract = {Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases}, language = {en} }