@inproceedings{WalentaSchellekensFerreinetal.2017, author = {Walenta, Robert and Schellekens, Twan and Ferrein, Alexander and Schiffer, Stefan}, title = {A decentralised system approach for controlling AGVs with ROS}, series = {AFRICON, Proceedings}, booktitle = {AFRICON, Proceedings}, publisher = {IEEE}, isbn = {978-1-5386-2775-4}, issn = {2153-0033}, doi = {10.1109/AFRCON.2017.8095693}, pages = {1436 -- 1441}, year = {2017}, language = {en} } @inproceedings{SchifferFerrein2017, author = {Schiffer, Stefan and Ferrein, Alexander}, title = {A System Layout for Cognitive Service Robots}, series = {Cognitive Robot Architectures. Proceedings of EUCognition 2016}, booktitle = {Cognitive Robot Architectures. Proceedings of EUCognition 2016}, issn = {1613-0073}, pages = {44 -- 45}, year = {2017}, language = {en} } @inproceedings{MarcoFerrein2017, author = {Marco, Heather G. and Ferrein, Alexander}, title = {AGNES: The African-German Network of Excellence in Science}, series = {Proceedings of the 2nd Developing World Robotics Forum, Workshop at IEEE AFRICON 2017}, booktitle = {Proceedings of the 2nd Developing World Robotics Forum, Workshop at IEEE AFRICON 2017}, pages = {1 -- 2}, year = {2017}, language = {en} } @inproceedings{ZugNiemuellerHochgeschwenderetal.2017, author = {Zug, Sebastian and Niemueller, Tim and Hochgeschwender, Nico and Seidensticker, Kai and Seidel, Martin and Friedrich, Tim and Neumann, Tobias and Karras, Ulrich and Kraetzschmar, Gerhard K. and Ferrein, Alexander}, title = {An Integration Challenge to Bridge the Gap Among Industry-Inspired RoboCup Leagues}, series = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, booktitle = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_13}, pages = {157 -- 168}, year = {2017}, language = {en} } @incollection{NiemuellerLakemeyerReuteretal.2017, author = {Niemueller, T. and Lakemeyer, G. and Reuter, S. and Jeschke, S. and Ferrein, Alexander}, title = {Benchmarking of Cyber-Physical Systems in Industrial Robotics: The RoboCup Logistics League as a CPS Benchmark Blueprint}, series = {Cyber-Physical Systems: Foundations, Principles and Applications}, booktitle = {Cyber-Physical Systems: Foundations, Principles and Applications}, publisher = {Academic Press}, address = {London}, doi = {10.1016/B978-0-12-803801-7.00013-4}, pages = {193 -- 207}, year = {2017}, abstract = {In the future, we expect manufacturing companies to follow a new paradigm that mandates more automation and autonomy in production processes. Such smart factories will offer a variety of production technologies as services that can be combined ad hoc to produce a large number of different product types and variants cost-effectively even in small lot sizes. This is enabled by cyber-physical systems that feature flexible automated planning methods for production scheduling, execution control, and in-factory logistics. During development, testbeds are required to determine the applicability of integrated systems in such scenarios. Furthermore, benchmarks are needed to quantify and compare system performance in these industry-inspired scenarios at a comprehensible and manageable size which is, at the same time, complex enough to yield meaningful results. In this chapter, based on our experience in the RoboCup Logistics League (RCLL) as a specific example, we derive a generic blueprint for how a holistic benchmark can be developed, which combines a specific scenario with a set of key performance indicators as metrics to evaluate the overall integrated system and its components.}, language = {de} } @incollection{NiemuellerZwillingLakemeyeretal.2017, author = {Niemueller, Tim and Zwilling, Frederik and Lakemeyer, Gerhard and L{\"o}bach, Matthias and Reuter, Sebastian and Jeschke, Sabina and Ferrein, Alexander}, title = {Cyber-Physical System Intelligence}, series = {Industrial Internet of Things}, booktitle = {Industrial Internet of Things}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42559-7}, doi = {10.1007/978-3-319-42559-7_17}, pages = {447 -- 472}, year = {2017}, abstract = {Cyber-physical systems are ever more common in manufacturing industries. Increasing their autonomy has been declared an explicit goal, for example, as part of the Industry 4.0 vision. To achieve this system intelligence, principled and software-driven methods are required to analyze sensing data, make goal-directed decisions, and eventually execute and monitor chosen tasks. In this chapter, we present a number of knowledge-based approaches to these problems and case studies with in-depth evaluation results of several different implementations for groups of autonomous mobile robots performing in-house logistics in a smart factory. We focus on knowledge-based systems because besides providing expressive languages and capable reasoning techniques, they also allow for explaining how a particular sequence of actions came about, for example, in the case of a failure.}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {Design considerations of the duo fugam dual rotor UAV}, series = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, booktitle = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, isbn = {978-1-5386-2314-5}, doi = {10.1109/RoboMech.2017.8261115}, pages = {7 -- 13}, year = {2017}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2017, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan and Dahmann, Peter}, title = {Developing a climbing maintenance robot for tower and rotor blade service of wind turbines}, series = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, booktitle = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-49058-8}, doi = {10.1007/978-3-319-49058-8_34}, pages = {310 -- 319}, year = {2017}, language = {en} } @inproceedings{NiemuellerNeumannHenkeetal.2017, author = {Niemueller, Tim and Neumann, Tobias and Henke, Christoph and Sch{\"o}nitz, Sebastian and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Improvements for a robust production in the RoboCup logistics league 2016}, series = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, booktitle = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_49}, pages = {589 -- 600}, year = {2017}, language = {en} } @inproceedings{NiemuellerNeumannHenkeetal.2017, author = {Niemueller, Tim and Neumann, Tobias and Henke, Christoph and Sch{\"o}nitz, Sebastian and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {International Harting Open Source Award 2016: Fawkes for the RoboCup Logistics League}, series = {RoboCup 2016: RoboCup 2016: Robot World Cup XX. RoboCup 2016}, booktitle = {RoboCup 2016: RoboCup 2016: Robot World Cup XX. RoboCup 2016}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_53}, pages = {634 -- 642}, year = {2017}, language = {en} }