@article{Olbertz2018, author = {Olbertz, Klaus}, title = {Der Interimsmanager als Selbst{\"a}ndiger oder Arbeitnehmer : Vertragliche Varianten des Interimsmanagements im Faktencheck}, series = {NWB - Steuer- und Wirtschaftsrecht}, journal = {NWB - Steuer- und Wirtschaftsrecht}, number = {31}, publisher = {NWB-Verl.}, address = {Herne}, issn = {1860-9449}, pages = {2260 -- 2266}, year = {2018}, language = {de} } @article{Olbertz2018, author = {Olbertz, Klaus}, title = {Das rechtssichere Arbeitszeugnis - Erlaubte und nicht erlaubte Formulierungen und anderes Wissenswertes}, series = {NWB - Steuer- und Wirtschaftsrecht}, journal = {NWB - Steuer- und Wirtschaftsrecht}, number = {12}, publisher = {NWB-Verl.}, address = {Herne}, issn = {1860-9449}, pages = {802 -- 813}, year = {2018}, language = {de} } @article{Golland2018, author = {Golland, Alexander}, title = {Das neue kirchliche Datenschutzrecht - Herausforderungen f{\"u}r Unternehmen der Privatwirtschaft}, series = {DSB Datenschutz-Berater}, volume = {42}, journal = {DSB Datenschutz-Berater}, number = {9}, publisher = {dfv Mediengruppe}, address = {Frankfurt a.M.}, isbn = {0170-7256}, pages = {179 -- 181}, year = {2018}, language = {de} } @article{Golland2018, author = {Golland, Alexander}, title = {Das Kopplungsverbot in der Datenschutz-Grundverordnung Anwendungsbereich, {\"o}konomische Auswirkungen auf Web 2.0-Dienste und L{\"o}sungsvorschlag}, series = {MMR Multimedia und Recht}, volume = {21}, journal = {MMR Multimedia und Recht}, number = {3}, publisher = {Beck}, address = {M{\"u}nchen}, isbn = {1434-596X}, pages = {130 -- 135}, year = {2018}, abstract = {Das Kopplungsverbot fristete - obwohl in rechtswissenschaftlicher Literatur seit jeher diskutiert - unter der Geltung des BDSG ein Schattendasein. Mit der Datenschutz-Grundverordnung (DS-GVO) ist eine {\"A}nderung absehbar: Der neue Art. EWG_DSGVO Artikel 7 Abs. EWG_DSGVO Artikel 7 Absatz 4 DS-GVO stellt klar, dass die Leistungserbringung nicht von der Einwilligungserteilung abh{\"a}ngig gemacht werden darf. Doch dieses scheinbare Novum des Datenschutzrechts wirft zahlreiche Fragen auf. W{\"a}hrend vor allem Vertreter der unternehmerischen Praxis die Anwendung des Kopplungsverbots in zahlreichen Konstellationen ablehnen, beschw{\"o}ren dessen Apologeten das Ende s{\"a}mtlicher „datenfinanzierten" Dienste herauf. Der vorliegende Beitrag gibt Einblick in die Regelungstiefe einer Norm, die das Web 2.0 revolutionieren k{\"o}nnte, und schl{\"a}gt eine L{\"o}sung vor, die dem Schutz der Privatsph{\"a}re des Betroffenen und den wirtschaftlichen Interessen von Diensteanbietern gleichermaßen gerecht wird.}, language = {de} } @article{JungStaatMueller2018, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Corrigendum to "Flight style optimization in ski jumping on normal, large, and ski flying hills" [J. Biomech 47 (2014) 716-722]}, series = {Journals of Biomechanics}, journal = {Journals of Biomechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.02.001}, pages = {313}, year = {2018}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @article{FunkeBeckmannKeinzetal.2018, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, publisher = {ASME}, address = {New York, NY}, issn = {0742-4795}, doi = {10.1115/1.4038882}, pages = {9 Seiten}, year = {2018}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry.}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @article{EngelmannRoethEberbecketal.2018, author = {Engelmann, Ulrich M. and Roeth, Anjali A.J. and Eberbeck, Dietmar and Buhl, Eva Miriam and Neumann, Ulf Peter and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-018-31553-9}, pages = {Article number 13210}, year = {2018}, abstract = {Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95\% was achieved by depositing an intracellular total thermal energy with about 50\% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86\% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65\% after MNP were internalized inside cells.}, language = {en} }