@article{DigelKayserArtmann2008, author = {Digel, Ilya and Kayser, Peter and Artmann, Gerhard}, title = {Molecular processes in biological thermosensation}, series = {Journal of Biophysics. 2008 (2008)}, journal = {Journal of Biophysics. 2008 (2008)}, isbn = {1687-8000}, pages = {1 -- 9}, year = {2008}, language = {en} } @article{HentschkeHagerHojdis2014, author = {Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils}, title = {Molecular Modeling Approach to the Prediction of Mechanical Properties of Silica-Reinforced Rubbers}, series = {Journal of Applied Polymer Science}, volume = {131}, journal = {Journal of Applied Polymer Science}, number = {18}, publisher = {Wiley}, address = {New York, NY}, issn = {1097-4628}, doi = {10.1002/app.40806}, pages = {1 -- 9}, year = {2014}, abstract = {Recently, we have suggested a nanomechanical model for dissipative loss in filled elastomer networks in the context of the Payne effect. The mechanism is based on a total interfiller particle force exhibiting an intermittent loop, due to the combination of short-range repulsion and dispersion forces with a long-range elastic attraction. The sum of these forces leads, under external strain, to a spontaneous instability of "bonds" between the aggregates in a filler network and attendant energy dissipation. Here, we use molecular dynamics simulations to obtain chemically realistic forces between surface modified silica particles. The latter are combined with the above model to estimate the loss modulus and the low strain storage modulus in elastomers containing the aforementioned filler-compatibilizer systems. The model is compared to experimental dynamic moduli of silica filled rubbers. We find good agreement between the model predictions and the experiments as function of the compatibilizer's molecular structure and its bulk concentration.}, language = {en} } @article{SagymbayGENZhetal.2019, author = {Sagymbay, Altynay and G.E., Nusupbaeva and N.Zh, Tleumbetova and A.S., Mutalieva and Nurpeisova, Ainur and D.B., Jussupova and Digel, Ilya}, title = {Molecular genetics features of the epidemic season 2017-2018 on the influenza in Kazakhstan}, series = {Eurasian Journal of Ecology}, volume = {58}, journal = {Eurasian Journal of Ecology}, number = {1}, isbn = {2617-7358}, pages = {50 -- 60}, year = {2019}, language = {ru} } @article{DuttaHartkopfFroederWitteetal.2013, author = {Dutta, Suryendu and Hartkopf-Fr{\"o}der, Christoph and Witte, Karin and Brocke, Rainer and Mann, Ulrich}, title = {Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: implications for hydrocarbon source evaluation}, series = {International journal of coal geology}, volume = {Vol. 115}, journal = {International journal of coal geology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7840 (E-Journal); 0166-5162 (Print)}, pages = {13 -- 23}, year = {2013}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2017, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J. and Meier, Rahel and Mojsen-Moeller, Jens and Seynnes, Olivier R.}, title = {Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task}, series = {Journal of Experimental Biology}, volume = {220}, journal = {Journal of Experimental Biology}, number = {22}, issn = {0022-0949}, doi = {10.1242/jeb.164111}, pages = {4141 -- 4149}, year = {2017}, language = {en} } @article{AlbannaLuekeSchubertetal.2019, author = {Albanna, Walid and L{\"u}ke, Jan Niklas and Schubert, Gerrit Alexander and Dibu{\´e}-Adjei, Maxine and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Steiger, Hans-Jakob and H{\"a}nggi, Daniel and Kamp, Marcel A. and Schneider, Toni and Neumaier, Felix}, title = {Modulation of Ca v 2.3 channels by unconjugated bilirubin (UCB) - Candidate mechanism for UCB-induced neuromodulation and neurotoxicity}, series = {Molecular and Cellular Neuroscience}, volume = {96}, journal = {Molecular and Cellular Neuroscience}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1044-7431}, doi = {10.1016/j.mcn.2019.03.003}, pages = {35 -- 46}, year = {2019}, language = {en} } @article{GerhardtSchoenwaldForssmannetal.2005, author = {Gerhardt, Hans Joachim and Sch{\"o}nwald, J. and Forßmann, R. and Große, Wolfgang}, title = {Modulation der Windenergie durch optimierte Uferbepflanzung zur Steuerung der Oberfl{\"a}chenstr{\"o}mung f{\"u}r das Entfernung von Treibgut}, series = {Der F{\"u}hlinger See : Beitr{\"a}ge zur Erhaltung der {\"o}kologischen Qualit{\"a}t / hrsg. von Wolfgang Große ... - ({\"O}kologie und nachhaltige Entwicklung von Sport- und Freizeitseen ; 1)}, journal = {Der F{\"u}hlinger See : Beitr{\"a}ge zur Erhaltung der {\"o}kologischen Qualit{\"a}t / hrsg. von Wolfgang Große ... - ({\"O}kologie und nachhaltige Entwicklung von Sport- und Freizeitseen ; 1)}, publisher = {Monsenstein und Vannerdat}, address = {M{\"u}nster}, isbn = {3-86582-212-6}, pages = {95 -- 108}, year = {2005}, language = {de} } @article{FoersterZettlerMikkelsenetal.1992, author = {F{\"o}rster, Arnold and Zettler, J.-T. and Mikkelsen, H. and Leo, K.}, title = {Modulated ellipsometric measurements and transfer-matrix calculation of the field-dependent dielectric function of a multiple quantum well / J.-Th. Zettler ; H. Mikkelsen ; K. Leo ... A. F{\"o}rster}, series = {Physical Review B . 46 (1992), H. 24}, journal = {Physical Review B . 46 (1992), H. 24}, isbn = {0163-1829}, pages = {15955 -- 15962}, year = {1992}, language = {en} } @article{SammFaissnerMoersetal.1993, author = {Samm, Doris and Faissner, H. and Moers, T. and Priem, R.}, title = {Modular wall-less drift chamber for muon detection at the LHC / H. Faissner, Th. Moers, R. Priem, ... , D. Samm [u.a.]}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 330 (1993), H. 1-2}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 330 (1993), H. 1-2}, pages = {76 -- 82}, year = {1993}, language = {en} } @article{GraesslRenzHezeletal.2013, author = {Gr{\"a}ßl, Andreas and Renz, Wolfgang and Hezel, Fabian and Dieringer, Matthias A. and Winter, Lukas and {\"O}zerdem, Celal and Rieger, Jan and Kellmann, Peter and Santoro, Davide and Lindel, Tomasz D. and Frauenrath, Tobias and Pfeiffer, Harald and Niendorf, Thoralf}, title = {Modular 32-channel transceiver coil array for cardiac MRI at 7.0T}, series = {Magnetic Resonance in Medicine}, volume = {72}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24903}, pages = {276 -- 290}, year = {2013}, abstract = {Purpose To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. Methods The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1+ field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. Results Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm3 for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. Conclusion The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.}, language = {en} }