@article{ButenwegMarinkovicPhlippetal.2022, author = {Butenweg, Christoph and Marinkovic, Marko and Phlipp, Michel and Lins, Robin and Renaut, Philipp}, title = {Isolierung und BIM-basiertes Bauwerksmonitoring des neuen Geb{\"a}udekomplexes f{\"u}r das BioSense-Institut in Novi Sad, Serbien}, series = {Bauingenieur}, volume = {97}, journal = {Bauingenieur}, number = {6}, editor = {Haghsheno, Shervin}, publisher = {VDI Fachmedien}, address = {D{\"u}sseldorf}, issn = {1436-4867}, doi = {10.37544/0005-6650-2022-06-28}, pages = {S3 -- S5}, year = {2022}, abstract = {Im Norden von Serbien erfolgt in Novi Sad der Neubau eines modernen Forschungsgeb{\"a}udes f{\"u}r das BioSense-Institut mit finanzieller Unterst{\"u}tzung durch die Eu-rop{\"a}ische Union. Der Geb{\"a}udeteil mit Laboren wird zum Schutz und zur Sicherstellung des reibungslosen Betriebs der sensiblen und kapitalintensiven technischen Einbauten mit ei-ner Erdbebenisolierung mit integrierter K{\"o}rperschallisolation versehen. Zus{\"a}tzlich wird der entkoppelte Laborteil des For-schungsgeb{\"a}udes mit einem BIM-basierten Bauwerksmonito-ring versehen, um {\"A}nderungen des Geb{\"a}udezustands jederzeit abfragen und beurteilen zu k{\"o}nnen.}, language = {de} } @article{LindnerBurgerRutledgeetal.2022, author = {Lindner, Simon and Burger, Ren{\´e} and Rutledge, Douglas N. and Do, Xuan Tung and Rumpf, Jessica and Diehl, Bernd W. K. and Schulze, Margit and Monakhova, Yulia}, title = {Is the calibration transfer of multivariate calibration models between high- and low-field NMR instruments possible? A case study of lignin molecular weight}, series = {Analytical chemistry}, volume = {94}, journal = {Analytical chemistry}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, isbn = {1520-6882}, doi = {10.1021/acs.analchem.1c05125}, pages = {3997 -- 4004}, year = {2022}, abstract = {Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.}, language = {en} } @article{HeinEubanksLingametal.2022, author = {Hein, Andreas M. and Eubanks, T. Marshall and Lingam, Manasvi and Hibberd, Adam and Fries, Dan and Schneider, Jean and Kervella, Pierre and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd}, title = {Interstellar now! Missions to explore nearby interstellar objects}, series = {Advances in Space Research}, volume = {69}, journal = {Advances in Space Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.06.052}, pages = {402 -- 414}, year = {2022}, abstract = {The recently discovered first hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{LenzKahmannBehbahanietal.2022, author = {Lenz, Maximilian and Kahmann, Stephanie Lucina and Behbahani, Mehdi and Pennig, Lenhard and Hackl, Michael and Leschinger, Tim and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Influence of rotator cuff preload on fracture configuration in proximal humerus fractures: a proof of concept for fracture simulation}, series = {Archives of Orthopaedic and Trauma Surgery}, journal = {Archives of Orthopaedic and Trauma Surgery}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1434-3916}, doi = {10.1007/s00402-022-04471-9}, year = {2022}, abstract = {Introduction In regard of surgical training, the reproducible simulation of life-like proximal humerus fractures in human cadaveric specimens is desirable. The aim of the present study was to develop a technique that allows simulation of realistic proximal humerus fractures and to analyse the influence of rotator cuff preload on the generated lesions in regards of fracture configuration. Materials and methods Ten cadaveric specimens (6 left, 4 right) were fractured using a custom-made drop-test bench, in two groups. Five specimens were fractured without rotator cuff preload, while the other five were fractured with the tendons of the rotator cuff preloaded with 2 kg each. The humeral shaft and the shortened scapula were potted. The humerus was positioned at 90° of abduction and 10° of internal rotation to simulate a fall on the elevated arm. In two specimens of each group, the emergence of the fractures was documented with high-speed video imaging. Pre-fracture radiographs were taken to evaluate the deltoid-tuberosity index as a measure of bone density. Post-fracture X-rays and CT scans were performed to define the exact fracture configurations. Neer's classification was used to analyse the fractures. Results In all ten cadaveric specimens life-like proximal humerus fractures were achieved. Two III-part and three IV-part fractures resulted in each group. The preloading of the rotator cuff muscles had no further influence on the fracture configuration. High-speed videos of the fracture simulation revealed identical fracture mechanisms for both groups. We observed a two-step fracture mechanism, with initial impaction of the head segment against the glenoid followed by fracturing of the head and the tuberosities and then with further impaction of the shaft against the acromion, which lead to separation of the tuberosities. Conclusion A high energetic axial impulse can reliably induce realistic proximal humerus fractures in cadaveric specimens. The preload of the rotator cuff muscles had no influence on initial fracture configuration. Therefore, fracture simulation in the proximal humerus is less elaborate. Using the presented technique, pre-fractured specimens are available for real-life surgical education.}, language = {en} } @article{PhilippEfthimiouPaganoetal.2022, author = {Philipp, Mohr and Efthimiou, Nikos and Pagano, Fiammetta and Kratochwil, Nicolaus and Pizzichemi, Marco and Tsoumpas, Charalampos and Auffray, Etiennette and Ziemons, Karl}, title = {Image reconstruction analysis for positron emission tomography with heterostructured scintillators}, series = {IEEE Transactions on Radiation and Plasma Medical Sciences}, volume = {7}, journal = {IEEE Transactions on Radiation and Plasma Medical Sciences}, number = {1}, publisher = {IEEE}, address = {New York, NY}, issn = {2469-7311}, doi = {10.1109/TRPMS.2022.3208615}, pages = {41 -- 51}, year = {2022}, abstract = {The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0×3.1×15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32\% for 100 μm thick plastic layers and 52\% for 50 μm, the CTR distribution improved to 204±49 ps and 220±41 ps respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On a NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast to noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.}, language = {en} } @article{WerfelGuenthnerHapfelmeieretal.2022, author = {Werfel, Stanislas and G{\"u}nthner, Roman and Hapfelmeier, Alexander and Hanssen, Henner and Kotliar, Konstantin and Heemann, Uwe and Schmaderer, Christoph}, title = {Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning}, series = {Cardiovascular Research}, volume = {118}, journal = {Cardiovascular Research}, number = {2}, editor = {Guzik, Tomasz J.}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvab040}, pages = {612 -- 621}, year = {2022}, abstract = {Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2022, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Hydrogen-based steel production and global climate protection: An empirical analysis of the potential role of a European cross border adjustment mechanism}, series = {Journal of Cleaner Production}, volume = {380}, journal = {Journal of Cleaner Production}, number = {Part 2, Art. Nr.:135040}, publisher = {Elsevier}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2022.135040}, year = {2022}, abstract = {The European Union's aim to become climate neutral by 2050 necessitates ambitious efforts to reduce carbon emissions. Large reductions can be attained particularly in energy intensive sectors like iron and steel. In order to prevent the relocation of such industries outside the EU in the course of tightening environmental regulations, the establishment of a climate club jointly with other large emitters and alternatively the unilateral implementation of an international cross-border carbon tax mechanism are proposed. This article focuses on the latter option choosing the steel sector as an example. In particular, we investigate the financial conditions under which a European cross border mechanism is capable to protect hydrogen-based steel production routes employed in Europe against more polluting competition from abroad. By using a floor price model, we assess the competitiveness of different steel production routes in selected countries. We evaluate the climate friendliness of steel production on the basis of specific GHG emissions. In addition, we utilize an input-output price model. It enables us to assess impacts of rising cost of steel production on commodities using steel as intermediates. Our results raise concerns that a cross-border tax mechanism will not suffice to bring about competitiveness of hydrogen-based steel production in Europe because the cost tends to remain higher than the cost of steel production in e.g. China. Steel is a classic example for a good used mainly as intermediate for other products. Therefore, a cross-border tax mechanism for steel will increase the price of products produced in the EU that require steel as an input. This can in turn adversely affect competitiveness of these sectors. Hence, the effects of higher steel costs on European exports should be borne in mind and could require the cross-border adjustment mechanism to also subsidize exports.}, language = {en} } @article{PeereBlanke2022, author = {Peere, Wouter and Blanke, Tobias}, title = {GHEtool: An open-source tool for borefield sizing in Python}, series = {Journal of Open Source Software}, volume = {7}, journal = {Journal of Open Source Software}, number = {76}, editor = {Vernon, Chris}, issn = {2475-9066}, doi = {10.21105/joss.04406}, pages = {1 -- 4, 4406}, year = {2022}, abstract = {GHEtool is a Python package that contains all the functionalities needed to deal with borefield design. It is developed for both researchers and practitioners. The core of this package is the automated sizing of borefield under different conditions. The sizing of a borefield is typically slow due to the high complexity of the mathematical background. Because this tool has a lot of precalculated data, GHEtool can size a borefield in the order of tenths of milliseconds. This sizing typically takes the order of minutes. Therefore, this tool is suited for being implemented in typical workflows where iterations are required. GHEtool also comes with a graphical user interface (GUI). This GUI is prebuilt as an exe-file because this provides access to all the functionalities without coding. A setup to install the GUI at the user-defined place is also implemented and available at: https://www.mech.kuleuven.be/en/tme/research/thermal_systems/tools/ghetool.}, language = {en} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} } @article{PourshahidiAchtsnichtOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {22}, editor = {Offenh{\"a}usser, Andreas}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22228776}, pages = {12 Seiten}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been explored for its applications in fields of magnetic biosensing, multiplex detection of magnetic nanoparticles (MNP) and the determination of core size distribution of MNP samples. Such applications rely on the application of a static offset magnetic field, which is generated traditionally with an electromagnet. Such a setup requires a current source, as well as passive or active cooling strategies, which directly sets a limitation based on the portability aspect that is desired for point of care (POC) monitoring applications. In this work, a measurement head is introduced that involves the utilization of two ring-shaped permanent magnets to generate a static offset magnetic field. A steel cylinder in the ring bores homogenizes the field. By variation of the distance between the ring magnets and of the thickness of the steel cylinder, the magnitude of the magnetic field at the sample position can be adjusted. Furthermore, the measurement setup is compared to the electromagnet offset module based on measured signals and temperature behavior.}, language = {en} }