@incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, R.A. and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HinkeVervierBrauneretal.2022, author = {Hinke, Christian and Vervier, Luisa and Brauner, Philipp and Schneider, Sebastian and Steuer-Dankert, Linda and Ziefle, Martina and Leicht-Scholten, Carmen}, title = {Capability configuration in next generation manufacturing}, series = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, booktitle = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07733-3}, doi = {10.1007/978-3-031-07734-0_6}, pages = {95 -- 106}, year = {2022}, abstract = {Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today's world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students.}, language = {en} } @inproceedings{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Behaviour factor q for the seismic design of URM buildings}, series = {The Third European Conference on Earthquake Engineering and Seismology September 4 - September 9, 2022, Bucharest}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology September 4 - September 9, 2022, Bucharest}, editor = {Arion, Christian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {1184 -- 1194}, year = {2022}, abstract = {Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed.}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SolarPACES 2020}, booktitle = {SolarPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} } @inproceedings{PuetzBaierBrauneretal.2022, author = {P{\"u}tz, Sebastian and Baier, Ralph and Brauner, Philipp and Brillowski, Florian and Dammers, Hannah and Liehner, Luca and Mertens, Alexander and Rodemann, Niklas and Schneider, Sebastian and Schollemann, Alexander and Steuer-Dankert, Linda and Vervier, Luisa and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {An interdisciplinary view on humane interfaces for digital shadows in the internet of production}, series = {2022 15th International Conference on Human System Interaction (HSI)}, booktitle = {2022 15th International Conference on Human System Interaction (HSI)}, publisher = {IEEE}, isbn = {978-1-6654-6823-7 (Print)}, issn = {2158-2246 (Print)}, doi = {10.1109/HSI55341.2022.9869467}, pages = {8 Seiten}, year = {2022}, abstract = {Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers' capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization.}, language = {en} } @article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} }