@article{SchroeterHoffmannVoigtetal.2014, author = {Schroeter, Rebecca and Hoffmann, Tamara and Voigt, Birgit and Meyer, Hanna and Bleisteiner, Monika and Muntel, Jan and J{\"u}rgen, Britta and Albrecht, Dirk and Becher, D{\"o}rte and Lalk, Michael and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Putzer, Harald and Hecker, Michael and Schweder, Thomas and Bremer, Erhard}, title = {Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0080956}, pages = {e80956}, year = {2014}, abstract = {The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.}, language = {en} } @article{HandtkeVollandMethlingetal.2014, author = {Handtke, Stefan and Volland, Sonja and Methling, Karen and Albrecht, Dirk and Becher, D{\"o}rte and Nehls, Jenny and Bongaerts, Johannes and Maurer, Karl-Heinz and Lalk, Michael and Liesegang, Heiko and Voigt, Birgit and Daniel, Rolf and Hecker, Michael}, title = {Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - An omics-based approach}, series = {Journal of Biotechnology}, journal = {Journal of Biotechnology}, number = {192(A)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2014.08.028}, pages = {204 -- 214}, year = {2014}, abstract = {Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43\% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.}, language = {en} } @inproceedings{ButenwegRajan2014, author = {Butenweg, Christoph and Rajan, Sreelakshmy}, title = {Design and construction techniques of AAC masonry buildings in earthquakes regions}, series = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, booktitle = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, year = {2014}, language = {en} } @article{KluczkaEcksteinAlexopoulosetal.2014, author = {Kluczka, Sven and Eckstein, Julian and Alexopoulos, Spiros and Vaeßen, Christiane and Roeb, Martin}, title = {Process simulation for solar steam and dry reforming}, series = {Energy procedia : Proceedings of the SolarPACES 2013 International Conference}, volume = {49}, journal = {Energy procedia : Proceedings of the SolarPACES 2013 International Conference}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal)}, doi = {10.1016/j.egypro.2014.03.092}, pages = {850 -- 859}, year = {2014}, abstract = {In co-operation with the German Aerospace Center, the Solar-Institut J{\"u}lich has been analyzing the different technologies that are available for methanol production from CO2 using solar energy. The aim of the project is to extract CO2 from industrial exhaust gases or directly from the atmosphere to recycle it by use of solar energy. Part of the study was the modeling and simulating of a methane reformer for the production of synthesis gas, which can be operated by solar or hybrid heat sources. The reformer has been simplified in such a way that the model is accurate and enables fast calculations. The developed pseudo-homogeneous one- dimensional model can be regarded as a kind of counter-current heat exchanger and is able to incorporate a steam reforming reaction as well as a dry reforming reaction.}, language = {en} } @article{SchusserBaeckerKrischeretal.2014, author = {Schusser, Sebastian and B{\"a}cker, Matthias and Krischer, M. and Wenzel, L. and Leinhos, Marcel and Poghossian, Arshak and Biselli, Manfred and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.689}, pages = {1314 -- 1317}, year = {2014}, abstract = {A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers.}, language = {en} } @inproceedings{JungStaatMueller2014, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Optimization of the flight style in ski jumping}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {799 -- 810}, year = {2014}, language = {en} } @article{PoghossianSchoening2014, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules with field-effect devices for clinical applications}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400073}, pages = {1197 -- 1213}, year = {2014}, abstract = {Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers.}, language = {en} } @article{LeinhosSchusserBaeckeretal.2014, author = {Leinhos, Marcel and Schusser, Sebastian and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Micromachined multi-parameter sensor chip for the control of polymer-degradation medium}, series = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, volume = {211}, journal = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330364}, pages = {1346 -- 1351}, year = {2014}, abstract = {It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium.}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Chaudhuri, S. and Zander, W. and Schubert, J. and Begoyan, V. K. and Buniatyan, V. V. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate}, series = {Sensors and actuators. B: Chemical}, journal = {Sensors and actuators. B: Chemical}, number = {198}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.02.103}, pages = {102 -- 109}, year = {2014}, language = {en} } @article{BaeckerKramerHucketal.2014, author = {B{\"a}cker, Matthias and Kramer, F. and Huck, Christina and Poghossian, Arshak and Bratov, A. and Abramova, N. and Sch{\"o}ning, Michael Josef}, title = {Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties}, series = {Physica Status Solidi (A) - Applications and Materials Science}, volume = {211}, journal = {Physica Status Solidi (A) - Applications and Materials Science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330416}, pages = {1357 -- 1363}, year = {2014}, abstract = {Planar and three-dimensional (3D) interdigitated electrodes (IDE) with electrode digits separated by an insulating barrier of different heights were electrochemically characterized and compared in terms of their sensing properties. Due to the impact of the surface resistance, both types of IDE structures display a non-linear behavior in low-ionic strength solutions. The experimental data were fitted to an electrical equivalent circuit and interpreted taking into account the surface-charge-governed properties. The effect of a charged polyelectrolyte layer electrostatically assembled onto the sensor surface on the surface resistance in solutions with different KCl concentration is studied. In case of the same electrode footprint, 3D-IDEs show a larger cell constant and a higher sensitivity to molecular adsorption than that of planar IDEs. The obtained results demonstrate the potential of 3D-IDEs as a new transducer structure for a direct label-free sensing of charged molecules.}, language = {en} }