@article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{WernerGroebelKrumbeetal.2012, author = {Werner, Frederik and Groebel, Simone and Krumbe, Christoph and Wagner, Torsten and Selmer, Thorsten and Yoshinobu, Tatsuo and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Nutrient concentration-sensitive microorganism-based biosensor}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100801}, pages = {900 -- 904}, year = {2012}, language = {en} } @article{JablonowskiKollmannNabeletal.2016, author = {Jablonowski, Nicolai David and Kollmann, Tobias and Nabel, Moritz and Damm, Tatjana and Klose, Holger and M{\"u}ller, Michael and Bl{\"a}sing, Marc and Seebold, S{\"o}ren and Krafft, Simone and Kuperjans, Isabel and Dahmen, Markus and Schurr, Ulrich}, title = {Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes}, series = {GCB [Global Change Biology] Bioenergy}, volume = {9}, journal = {GCB [Global Change Biology] Bioenergy}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1757-1707 (online)}, doi = {10.1111/gcbb.12346}, pages = {202 -- 214}, year = {2016}, abstract = {The performance and biomass yield of the perennial energy plant Sida hermaphrodita (hereafter referred to as Sida) as a feedstock for biogas and solid fuel was evaluated throughout one entire growing period at agricultural field conditions. A Sida plant development code was established to allow comparison of the plant growth stages and biomass composition. Four scenarios were evaluated to determine the use of Sida biomass with regard to plant development and harvest time: (i) one harvest for solid fuel only; (ii) one harvest for biogas production only; (iii) one harvest for biogas production, followed by a harvest of the regrown biomass for solid fuel; and (iv) two consecutive harvests for biogas production. To determine Sida's value as a feedstock for combustion, we assessed the caloric value, the ash quality, and melting point with regard to DIN EN ISO norms. The results showed highest total dry biomass yields of max. 25 t ha⁻¹, whereas the highest dry matter of 70\% to 80\% was obtained at the end of the growing period. Scenario (i) clearly indicated the highest energy recovery, accounting for 439 288 MJ ha⁻¹; the energy recovery of the four scenarios from highest to lowest followed this order: (i) ≫ (iii) ≫ (iv) > (ii). Analysis of the Sida ashes showed a high melting point of >1500 °C, associated with a net calorific value of 16.5-17.2 MJ kg⁻¹. All prerequisites for DIN EN ISO norms were achieved, indicating Sida's advantage as a solid energy carrier without any post-treatment after harvesting. Cell wall analysis of the stems showed a constant lignin content after sampling week 16 (July), whereas cellulose had already reached a plateau in sampling week 4 (April). The results highlight Sida as a promising woody, perennial plant, providing biomass for flexible and multipurpose energy applications.}, language = {en} } @article{RiekeStollenwerkDahmenetal.2018, author = {Rieke, Christian and Stollenwerk, Dominik and Dahmen, Markus and Pieper, Martin}, title = {Modeling and optimization of a biogas plant for a demand-driven energy supply}, series = {Energy}, volume = {145}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-5442}, doi = {10.1016/j.energy.2017.12.073}, pages = {657 -- 664}, year = {2018}, abstract = {Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60\%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant.}, language = {en} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @article{RuppHandschuhRiekeetal.2019, author = {Rupp, Matthias and Handschuh, Nils and Rieke, Christian and Kuperjans, Isabel}, title = {Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany}, series = {Applied Energy}, volume = {237}, journal = {Applied Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2019.01.059}, pages = {618 -- 634}, year = {2019}, language = {en} } @article{DotzauerPfeifferLaueretal.2019, author = {Dotzauer, Martin and Pfeiffer, Diana and Lauer, Markus and Pohl, Marcel and Mauky, Eric and B{\"a}r, Katharina and Sonnleitner, Matthias and Z{\"o}rner, Wilfried and Hudde, Jessica and Schwarz, Bj{\"o}rn and Faßauer, Burkhardt and Dahmen, Markus and Rieke, Christian and Herbert, Johannes and Thr{\"a}n, Daniela}, title = {How to measure flexibility - Performance indicators for demand driven power generation from biogas plants}, series = {Renewable Energy}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2018.10.021}, pages = {135 -- 146}, year = {2019}, language = {en} } @article{NobisSchmittSchemmetal.2020, author = {Nobis, Moritz and Schmitt, Carlo and Schemm, Ralf and Schnettler, Armin}, title = {Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets}, series = {Energies}, volume = {13}, journal = {Energies}, number = {Art. 2339}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13092339}, pages = {1 -- 35}, year = {2020}, abstract = {The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources.}, language = {en} } @article{HoffstadtPohenDickeetal.2020, author = {Hoffstadt, Kevin and Pohen, Gino D. and Dicke, Max D. and Paulsen, Svea and Krafft, Simone and Zang, Joachim W. and Fonseca-Zang, Warde A. da and Leite, Athaydes and Kuperjans, Isabel}, title = {Challenges and prospects of biogas from energy cane as supplement to bioethanol production}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10060821}, year = {2020}, abstract = {Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27\% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production.}, language = {en} } @article{RuppRiekeHandschuhetal.2020, author = {Rupp, Matthias and Rieke, Christian and Handschuh, Nils and Kuperjans, Isabel}, title = {Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities}, series = {Transportation Research Part D: Transport and Environment}, volume = {81}, journal = {Transportation Research Part D: Transport and Environment}, number = {Article 102293}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1361-9209}, doi = {10.1016/j.trd.2020.102293}, year = {2020}, abstract = {In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles' charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6\% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9\%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5\% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.}, language = {en} }