@article{SchopenShahEschetal.2024, author = {Schopen, Oliver and Shah, Neel and Esch, Thomas and Shabani, Bahman}, title = {Critical quantitative evaluation of integrated health management methods for fuel cell applications}, series = {International Journal of Hydrogen Energy}, volume = {70}, journal = {International Journal of Hydrogen Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2024.05.156}, pages = {370 -- 388}, year = {2024}, abstract = {Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system.}, language = {en} } @article{AyalaHarrisKleefeld2024, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas}, title = {Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary}, series = {Inverse Problems and Imaging}, volume = {18}, journal = {Inverse Problems and Imaging}, number = {3}, publisher = {AIMS}, address = {Springfield}, issn = {1930-8337}, doi = {10.3934/ipi.2023051}, pages = {708 -- 729}, year = {2024}, abstract = {In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.}, language = {en} } @article{Bung2024, author = {Bung, Daniel Bernhard}, title = {Kamerabasierte Fließtiefen- und Geschwindigkeitsmessungen}, series = {Wasserwirtschaft}, volume = {114}, journal = {Wasserwirtschaft}, number = {4}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0043-0978}, pages = {47 -- 53}, year = {2024}, abstract = {In der wasserbaulichen Forschung werden neben klassischen Messinstrumenten zunehmend kamerabasierte Verfahren genutzt. Diese erlauben neben der Bestimmung von Fließgeschwindigkeiten auch die Detektion der freien Wasseroberfl{\"a}che oder zeitliche Vermessung von Kolken. Durch die hohen r{\"a}umlichen und zeitlichen Aufl{\"o}sungen, welche neueste Kamerasensoren liefern, k{\"o}nnen neue Erkenntnisse in turbulenten, komplexen Str{\"o}mungen gewonnen werden. Auch in der Praxis k{\"o}nnen diese Verfahren mit geringem Aufwand wichtige Daten liefern.}, language = {de} }