@article{PinkenburgSchiffelsSelmer2016, author = {Pinkenburg, Olaf and Schiffels, Johannes and Selmer, Thorsten}, title = {Das CoLibry-Konzept - ein Werkzeugkasten f{\"u}r die Synthetische Biologie: Bioproduktion}, series = {BIOspektrum}, volume = {22}, journal = {BIOspektrum}, number = {6}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s12268-016-0734-8}, pages = {593 -- 595}, year = {2016}, abstract = {Regardless of size or destination, synthetic biology starts with com-parably small information units, which need to be combined and properly arranged in order to achieve a certain goal. This may be the de novo synthesis of individual genes from oligonucleotides, a shuffling of protein domains in order to create novel biocatalysts, the assembly of multiple enzyme encoding genes in metabolic pathway design, or strain development at the production stage. The CoLibry concept has been designed in order to close the gap between recombinant production of individual genes and genome editing.}, language = {de} } @article{GhoschBaierSchuetzetal.2016, author = {Ghosch, S. and Baier, M. and Sch{\"u}tz, J. and Schneider, Felix and Scherer, Ulrich W.}, title = {Analysis of electronic autoradiographs by mathematical post-processing}, series = {Radiation Effects and Defects in Solids: Incorporating plasma science and plasma technology}, volume = {171}, journal = {Radiation Effects and Defects in Solids: Incorporating plasma science and plasma technology}, number = {1-2}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4953}, doi = {10.1080/10420150.2016.1155587}, pages = {161 -- 172}, year = {2016}, abstract = {Autoradiography is a well-established method of nuclear imaging. When different radionuclides are present simultaneously, additional processing is needed to distinguish distributions of radionuclides. In this work, a method is presented where aluminium absorbers of different thickness are used to produce images with different cut-off energies. By subtracting images pixel-by-pixel one can generate images representing certain ranges of β-particle energies. The method is applied to the measurement of irradiated reactor graphite samples containing several radionuclides to determine the spatial distribution of these radionuclides within pre-defined energy windows. The process was repeated under fixed parameters after thermal treatment of the samples. The greyscale images of the distribution after treatment were subtracted from the corresponding pre-treatment images. Significant changes in the intensity and distribution of radionuclides could be observed in some samples. Due to the thermal treatment parameters the most significant differences were observed in the ³H and ¹⁴C inventory and distribution.}, language = {en} } @book{Lauth2016, author = {Lauth, Jakob}, title = {Physikalische Chemie, 5: Elektrochemie}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-47559-1}, pages = {55 Seiten}, year = {2016}, language = {de} } @book{Lauth2016, author = {Lauth, Jakob}, title = {Physikalische Chemie, 4: Reaktionskinetik}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-47674-1}, pages = {52 Seiten}, year = {2016}, language = {de} } @book{Lauth2016, author = {Lauth, Jakob}, title = {Physikalische Chemie, 3: Phasengleichgewichte}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-47571-3}, pages = {57 Seiten}, year = {2016}, language = {de} } @book{Lauth2016, author = {Lauth, Jakob}, title = {Physikalische Chemie, 2: Chemische Thermodynamik}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-47621-5}, pages = {77 Seiten}, year = {2016}, language = {de} } @book{Lauth2016, author = {Lauth, Jakob}, title = {Physikalische Chemie, 1: Grundlagen der Thermodynamik und Verhalten der Gase}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-47676-5}, pages = {57 Seiten}, year = {2016}, language = {de} } @book{LauthKowalczyk2016, author = {Lauth, Jakob and Kowalczyk, J{\"u}rgen}, title = {Einf{\"u}hrung in die Physik und Chemie der Grenzfl{\"a}chen und Kolloide}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-47018-3}, doi = {10.1007/978-3-662-47018-3}, pages = {Online-Ressource (XIX, 522 S., 341 Abb.)}, year = {2016}, language = {de} } @book{Feuerriegel2016, author = {Feuerriegel, Uwe}, title = {Verfahrenstechnik mit EXCEL: Verfahrenstechnische Berechnungen effektiv durchf{\"u}hren und professionell dokumentieren}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-658-02902-9}, doi = {10.1007/978-3-658-02903-6}, pages = {XVII, 381 Seiten}, year = {2016}, language = {de} } @article{ScheerWilson2016, author = {Scheer, Nico and Wilson, Ian D.}, title = {A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity}, series = {Drug Discovery Today}, volume = {21}, journal = {Drug Discovery Today}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-6446}, doi = {10.1016/j.drudis.2015.09.002}, pages = {250 -- 263}, year = {2016}, abstract = {Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.}, language = {en} }