@article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @article{ThomessenThomaBraun2023, author = {Thomessen, Karolin and Thoma, Andreas and Braun, Carsten}, title = {Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00691-w}, pages = {11 Seiten}, year = {2023}, abstract = {Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6\% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9\% in city-like worlds and reduces energy consumption by 28\%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.}, language = {en} } @incollection{DachwaldUlamecKowalskietal.2023, author = {Dachwald, Bernd and Ulamec, Stephan and Kowalski, Julia and Boxberg, Marc S. and Baader, Fabian and Biele, Jens and K{\"o}mle, Norbert}, title = {Ice melting probes}, series = {Handbook of Space Resources}, booktitle = {Handbook of Space Resources}, editor = {Badescu, Viorel and Zacny, Kris and Bar-Cohen, Yoseph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-97912-6 (Print)}, doi = {10.1007/978-3-030-97913-3_29}, pages = {955 -- 996}, year = {2023}, abstract = {The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests.}, language = {en} } @article{HammerQuitterMayntzetal.2023, author = {Hammer, Thorben and Quitter, Julius and Mayntz, Joscha and Bauschat, J.-Michael and Dahmann, Peter and G{\"o}tten, Falk and Hille, Sebastian and Stumpf, Eike}, title = {Free fall drag estimation of small-scale multirotor unmanned aircraft systems using computational fluid dynamics and wind tunnel experiments}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00702-w}, pages = {14 Seiten}, year = {2023}, abstract = {New European Union (EU) regulations for UAS operations require an operational risk analysis, which includes an estimation of the potential danger of the UAS crashing. A key parameter for the potential ground risk is the kinetic impact energy of the UAS. The kinetic energy depends on the impact velocity of the UAS and, therefore, on the aerodynamic drag and the weight during free fall. Hence, estimating the impact energy of a UAS requires an accurate drag estimation of the UAS in that state. The paper at hand presents the aerodynamic drag estimation of small-scale multirotor UAS. Multirotor UAS of various sizes and configurations were analysed with a fully unsteady Reynolds-averaged Navier-Stokes approach. These simulations included different velocities and various fuselage pitch angles of the UAS. The results were compared against force measurements performed in a subsonic wind tunnel and provided good consistency. Furthermore, the influence of the UAS`s fuselage pitch angle as well as the influence of fixed and free spinning propellers on the aerodynamic drag was analysed. Free spinning propellers may increase the drag by up to 110\%, depending on the fuselage pitch angle. Increasing the fuselage pitch angle of the UAS lowers the drag by 40\% up to 85\%, depending on the UAS. The data presented in this paper allow for increased accuracy of ground risk assessments.}, language = {en} } @article{SanchezCespedesLeasureTejedorGaravitoetal.2023, author = {Sanchez-Cespedes, Lina Maria and Leasure, Douglas Ryan and Tejedor-Garavito, Natalia and Amaya Cruz, Glenn Harry and Garcia Velez, Gustavo Adolfo and Mendoza Beltr{\´a}n, Andryu Enrique and Mar{\´i}n-Salazar, Yenny Andrea and Esch, Thomas and Tatem, Andrew J. and Ospina Boh{\´o}rquez, Mariana Francisca}, title = {Social cartography and satellite-derived building coverage for post-census population estimates in difficult-to-access regions of Colombia}, series = {Population studies : a Journal of Demography}, volume = {78}, journal = {Population studies : a Journal of Demography}, number = {1}, publisher = {Taylor \& Francis}, address = {London}, issn = {1477-4747}, doi = {10.1080/00324728.2023.2190151}, pages = {3 -- 20}, year = {2023}, abstract = {Effective government services rely on accurate population numbers to allocate resources. In Colombia and globally, census enumeration is challenging in remote regions and where armed conflict is occurring. During census preparations, the Colombian National Administrative Department of Statistics conducted social cartography workshops, where community representatives estimated numbers of dwellings and people throughout their regions. We repurposed this information, combining it with remotely sensed buildings data and other geospatial data. To estimate building counts and population sizes, we developed hierarchical Bayesian models, trained using nearby full-coverage census enumerations and assessed using 10-fold cross-validation. We compared models to assess the relative contributions of community knowledge, remotely sensed buildings, and their combination to model fit. The Community model was unbiased but imprecise; the Satellite model was more precise but biased; and the Combination model was best for overall accuracy. Results reaffirmed the power of remotely sensed buildings data for population estimation and highlighted the value of incorporating local knowledge.}, language = {en} } @inproceedings{MulsowHuelsenGuetzlaffetal.2023, author = {Mulsow, Niklas A. and H{\"u}lsen, Benjamin and G{\"u}tzlaff, Joel and Spies, Leon and Bresser, Andreas and Dabrowski, Adam and Czupalla, Markus and Kirchner, Frank}, title = {Concept and design of an autonomous micro rover for long term lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, address = {Saarbr{\"u}cken}, pages = {13 Seiten}, year = {2023}, abstract = {Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power.}, language = {en} } @article{FayyaziSardarThomasetal.2023, author = {Fayyazi, Mojgan and Sardar, Paramjotsingh and Thomas, Sumit Infent and Daghigh, Roonak and Jamali, Ali and Esch, Thomas and Kemper, Hans and Langari, Reza and Khayyam, Hamid}, title = {Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles}, volume = {15}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/su15065249}, pages = {38}, year = {2023}, abstract = {Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed.}, language = {en} } @article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @article{StiemerThomaBraun2023, author = {Stiemer, Luc Nicolas and Thoma, Andreas and Braun, Carsten}, title = {MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation}, series = {PLoS ONE}, volume = {18}, journal = {PLoS ONE}, number = {9}, publisher = {PLOS}, address = {San Fancisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0291415}, pages = {e0291415}, year = {2023}, abstract = {This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8\%, Faster R-CNN achieves AP = 45, 3\% and RetinaNet AP = 38, 4\% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker's appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5\% and a Multiple Object Tracking Precision MOTP = 75, 6\% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired.}, language = {en} }