@techreport{BerneckerBoyerGathmann2018, type = {Working Paper}, author = {Bernecker, Andreas and Boyer, Pierre and Gathmann, Christina}, title = {The Role of Electoral Incentives for Policy Innovation: Evidence from the US Welfare Reform}, series = {CESifo Working Paper}, journal = {CESifo Working Paper}, number = {No. 6964}, organization = {CESifo Group Munich}, issn = {ISSN 2364-1428 (electronic version)}, pages = {60}, year = {2018}, language = {en} } @techreport{FischedickSchoofHebeletal.2018, type = {Working Paper}, author = {Fischedick, Manfred and Schoof, Ren{\´e} and Hebel, Christoph and Merkens, Torsten and [und 27 weitere],}, title = {Sektorenkopplung als Herausforderung und Chance f{\"u}r das Energieland NRW : Handlungsoptionen und Ergebnispapier der Expertengruppe AG 4 „Sektoren- kopplung" im Netzwerk Netze und Speicher der EnergieAgentur.NRW im Auftrag des Landes Nordrhein-Westfalen / EnergieAgentur.NRW GmbH}, pages = {68 Seiten}, year = {2018}, language = {de} } @techreport{Drescher2018, type = {Working Paper}, author = {Drescher, Hans Paul}, title = {The irreversible thermodynamic's theorem of minimum entropy production applied to the laminar and the turbulent Couette flow}, pages = {48 Seiten}, year = {2018}, abstract = {Analyzing thermodynamic non-equilibrium processes, like the laminar and turbulent fluid flow, the dissipation is a key parameter with a characteristic minimum condition. That is applied to characterize laminar and turbulent behaviour of the Couette flow, including its transition in both directions. The Couette flow is chosen as the only flow form with constant shear stress over the flow profile, being laminar, turbulent or both. The local dissipation defines quantitative and stable criteria for the transition and the existence of turbulence. There are basic results: The Navier Stokes equations cannot describe the experimental flow profiles of the turbulent Couette flow. But they are used to quantify the dissipation of turbulent fluctuation. The dissipation minimum requires turbulent structures reaching maximum macroscopic dimensions, describing turbulence as a "non-local" phenomenon. At the transition the Couette flow profiles and the shear stress change by a factor ≅ 5 due to a change of the "apparent" turbulent viscosity by a calculated factor ≅ 27. The resulting difference of the laminar and the turbulent profiles results in two different Reynolds numbers and different loci of transition, which are identified by calculation.}, language = {en} }