@inproceedings{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems}, series = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, booktitle = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, pages = {1 -- 12}, year = {2018}, abstract = {The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs.}, language = {en} } @incollection{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_63}, year = {2018}, abstract = {The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.}, language = {en} } @inproceedings{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Pelz, Peter F.}, title = {Using mixed-integer programming for the optimal design of water supply networks for slums}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, editor = {Kliewer, Natalia and Ehmke, Jan Fabian and Bornd{\"o}rfer, Ralf}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0 (Print)}, doi = {10.1007/978-3-319-89920-6_68}, pages = {509 -- 516}, year = {2018}, abstract = {The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh.}, language = {en} } @incollection{AltherrDoerigEdereretal.2017, author = {Altherr, Lena and D{\"o}rig, Bastian and Ederer, Thorsten and Pelz, Peter Franz and Pfetsch, Marc and Wolf, Jan}, title = {A mixed-integer nonlinear program for the design of gearboxes}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-55701-4}, doi = {10.1007/978-3-319-55702-1_31}, pages = {227 -- 233}, year = {2017}, abstract = {Gearboxes are mechanical transmission systems that provide speed and torque conversions from a rotating power source. Being a central element of the drive train, they are relevant for the efficiency and durability of motor vehicles. In this work, we present a new approach for gearbox design: Modeling the design problem as a mixed-integer nonlinear program (MINLP) allows us to create gearbox designs from scratch for arbitrary requirements and—given enough time—to compute provably globally optimal designs for a given objective. We show how different degrees of freedom influence the runtime and present an exemplary solution.}, language = {en} } @inproceedings{AltherrPelzEdereretal.2017, author = {Altherr, Lena and Pelz, Peter F. and Ederer, Thorsten and Pfetsch, Marc E.}, title = {Optimale Getriebe auf Knopfdruck: Gemischt-ganzzahlige nichtlineare Optimierung zur Entscheidungsunterst{\"u}tzung bei der Auslegung von Getrieben f{\"u}r Kraftfahrzeuge}, series = {Antriebstechnisches Kolloquium ATK 2017}, booktitle = {Antriebstechnisches Kolloquium ATK 2017}, editor = {Jacobs, Georg}, isbn = {9783743148970}, pages = {313 -- 325}, year = {2017}, language = {de} } @inproceedings{AltherrEdererSchaenzleetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Sch{\"a}nzle, Christian and Lorenz, Ulf and Pelz, Peter F.}, title = {Algorithmic system design using scaling and affinity laws}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1}, pages = {605 -- 611}, year = {2017}, abstract = {Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem.}, language = {en} } @inproceedings{AltherrEdererFarnetaneetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Farnetane, Lucas S. and P{\"o}ttgen, Philipp and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Multicriterial design of a hydrostatic transmission system via mixed-integer programming}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1_41}, pages = {301 -- 307}, year = {2017}, abstract = {In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system's reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system.}, language = {en} } @book{Altherr2016, author = {Altherr, Lena}, title = {Algorithmic System Design under Consideration of Dynamic Processes}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8440-4848-3}, pages = {94}, year = {2016}, abstract = {Nach Stand von Wissenschaft und Technik werden Komponenten hinsichtlich ihrer Eigenschaften, wie Lebensdauer oder Energieeffizienz, optimiert. Allerdings k{\"o}nnen selbst hervorragende Komponenten zu ineffizienten oder instabilen Systemen f{\"u}hren, wenn ihr Zusammenspiel nur unzureichend ber{\"u}cksichtigt wird. Eine Systembetrachtung schafft ein gr{\"o}ßeres Optimierungspotential - dem erh{\"o}hten Potential steht jedoch auch ein erh{\"o}hter Komplexit{\"a}tsgrad gegen{\"u}ber. Die vorliegende Arbeit ist im Rahmen des Sonderforschungsbereichs 805 entstanden, dessen Ziel die Beherrschung von Unsicherheit in Systemen des Maschinenbaus ist. Die Arbeit zeigt anhand eines realen Systems aus dem Bereich der Hydraulik, wie Unsicherheit in der Entwicklungsphase beherrscht werden kann. Hierbei ist neu, dass die durch den sp{\"a}teren Betrieb zu erwartende Systemdegradation eines jeden m{\"o}glichen Systemvorschlags antizipiert werden kann. Dadurch k{\"o}nnen Betriebs- und Wartungskosten vorausgesagt und minimiert werden und durch eine optimale Betriebs- und Wartungsstrategie die Verf{\"u}gbarkeit des Systems garantiert werden. Wesentliche Fragen bei der optimalen Auslegung des betrachteten hydrostatischen Getriebes sind dessen physikalische Modellierung, die Darstellung des Optimierungsproblems als gemischt-ganzzahliges lineares Programm, und dessen algorithmische Behandlung zur L{\"o}sungsfindung. Hierzu werden Heuristiken zum schnelleren Auffinden sinnvoller Systemtopologien vorgestellt und mittels mathematischer Dekomposition eine Bewertung des dynamischen Verschleiß- und Wartungsverlaufs m{\"o}glicher Systemvorschl{\"a}ge vorgenommen. Die Arbeit stellt die Optimierung technischer Systeme an der Schnittstelle von Mathematik, Informatik und Ingenieurwesen sowohl gr{\"u}ndlich als auch anschaulich und nachvollziehbar dar.}, language = {en} } @incollection{AltherrEdererLorenzetal.2016, author = {Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F. and P{\"o}ttgen, Philipp}, title = {Designing a feedback control system via mixed-integer programming}, series = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, booktitle = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, editor = {L{\"u}bbecke, Marco E. and Koster, Arie and Letmathe, Peter and Madlener, Reihard and Preis, Britta and Walther, Grit}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-28695-2}, doi = {10.1007/978-3-319-28697-6_18}, pages = {121 -- 127}, year = {2016}, abstract = {Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap.}, language = {en} } @inproceedings{RauschLeiseEdereretal.2016, author = {Rausch, Lea and Leise, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem}, series = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, booktitle = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, editor = {Papadrakakis, M. and Ppadopoulos, V. and Stefanou, G. and Plevris, V.}, isbn = {978-618-82844-0-1}, pages = {8509 -- 8527}, year = {2016}, abstract = {Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art.}, language = {en} }