@article{CiritsisHorbachStaatetal.2018, author = {Ciritsis, Alexander and Horbach, Andreas and Staat, Manfred and Kuhl, Christiane K. and Kraemer, Nils Andreas}, title = {Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo}, series = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, volume = {106}, journal = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, number = {2}, publisher = {Wiley}, address = {New York, NY}, issn = {1552-4981}, doi = {10.1002/jbm.b.33877}, pages = {827 -- 833}, year = {2018}, abstract = {Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4\% for TPU and of 1.2\% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827-833, 2018.}, language = {en} } @article{FigueroaMirandaFengShiuetal.2018, author = {Figueroa-Miranda, Gabriela and Feng, Lingyan and Shiu, Simon Chi-Chin and Dirkzwager, Roderick Marshall and Cheung, Yee-Wai and Tanner, Julian Alexander and Sch{\"o}ning, Michael Josef and Offenh{\"a}usser, Andreas and Mayer, Dirk}, title = {Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability}, series = {Sensor and Actuators B: Chemical}, volume = {255}, journal = {Sensor and Actuators B: Chemical}, number = {P1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.07.117}, pages = {235 -- 243}, year = {2018}, abstract = {Malaria infection remains a significant risk for much of the population of tropical and subtropical areas, particularly in developing countries. Therefore, it is of high importance to develop sensitive, accurate and inexpensive malaria diagnosis tests. Here, we present a novel aptamer-based electrochemical biosensor (aptasensor) for malaria detection by impedance spectroscopy, through the specific recognition between a highly discriminatory DNA aptamer and its target Plasmodium falciparum lactate dehydrogenase (PfLDH). Interestingly, due to the isoelectric point (pI) of PfLDH, the aptasensor response showed an adjustable detection range based on the different protein net-charge at variable pH environments. The specific aptamer recognition allows sensitive protein detection with an expanded detection range and a low detection limit, as well as a high specificity for PfLDH compared to analogous proteins. The specific feasibility of the aptasensor is further demonstrated by detection of the target PfLDH in human serum. Furthermore, the aptasensor can be easily regenerated and thus applied for multiple usages. The robustness, sensitivity, and reusability of the presented aptasensor make it a promising candidate for point-of-care diagnostic systems.}, language = {en} } @article{MolinnusHardtSiegertetal.2018, author = {Molinnus, Denise and Hardt, Gabriel and Siegert, Petra and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling}, series = {Electroanalysis}, volume = {30}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201800026}, pages = {937 -- 942}, year = {2018}, abstract = {An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5-1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma.}, language = {en} } @article{BhattaraiJabbariAndingetal.2018, author = {Bhattarai, Aroj and Jabbari, Medisa and Anding, Ralf and Staat, Manfred}, title = {Surgical treatment of vaginal vault prolapse using different prosthetic mesh implants: a finite element analysis}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7113}, doi = {10.1515/teme-2017-0115}, pages = {331 -- 342}, year = {2018}, abstract = {Particularly multiparous elderly women may suffer from vaginal vault prolapse after hysterectomy due to weak support from lax apical ligaments. A decreased amount of estrogen and progesterone in older age is assumed to remodel the collagen thereby reducing tissue stiffness. Sacrocolpopexy is either performed as open or laparoscopic surgery using prosthetic mesh implants to substitute lax ligaments. Y-shaped mesh models (DynaMesh, Gynemesh, and Ultrapro) are implanted in a 3D female pelvic floor finite element model in the extraperitoneal space from the vaginal cuff to the first sacral (S1) bone below promontory. Numerical simulations are conducted during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues are modeled as incompressible, isotropic hyperelastic materials whereas the meshes are modeled either as orthotropic linear elastic or as isotropic hyperlastic materials. The positions of the vaginal cuff and the bladder base are calculated from the pubococcygeal line for female pelvic floor at rest, for prolapse and after repair using the three meshes. Due to mesh mechanics and mesh pore deformation along the loaded direction, the DynaMesh with regular rectangular mesh pores is found to provide better mechanical support to the organs than the Gynemesh and the Ultrapro with irregular hexagonal mesh pores. Insbesondere {\"a}ltere, mehrgeb{\"a}hrende Frauen leiden h{\"a}ufiger an einem Scheidenvorfall nach einer Hysterektomie aufgrund der schwachen Unterst{\"u}tzung durch laxe apikale B{\"a}nder. Es wird angenommen, dass eine verringerte Menge an {\"O}strogen und Progesteron im h{\"o}heren Alter das Kollagen umformt, wodurch die Gewebesteifigkeit reduziert wird. Die Sakrokolpopexie ist eine offene oder laparoskopische Operation, die mit prothetischen Netzimplantaten durchgef{\"u}hrt wird, um laxe B{\"a}nder zu ersetzen. Y-f{\"o}rmige Netzmodelle (DynaMesh, Gynemesh und Ultrapro) werden in einem 3D-Modell des weiblichen Beckenbodens im extraperitonealen Raum vom Vaginalstumpf bis zum Promontorium implantiert. Numerische Simulationen werden w{\"a}hrend des Valsalva-Man{\"o}vers mit geschw{\"a}chtem Gewebe durchgef{\"u}hrt, das durch eine reduzierte Gewebesteifigkeit modelliert wird. Die Gewebe werden als inkompressible, isotrop hyperelastische Materialien modelliert, w{\"a}hrend die Netze entweder als orthotrope linear elastische oder als isotrope hyperlastische Materialien modelliert werden. Die Positionen des Vaginalstumpfs, der Blase und der Harnr{\"o}hrenachse werden anhand der Pubococcygeallinie aus der Ruhelage, f{\"u}r den Prolaps und nach der Reparatur unter Verwendung der drei Netze berechnet. Aufgrund der Netzmechanik und der Netzporenverformung bietet das DynaMesh mit regelm{\"a}ßigen rechteckigen Netzporen eine bessere mechanische Unterst{\"u}tzung und eine Neupositionierung des Scheidengew{\"o}lbes, der Blase und der Urethraachse als Gynemesh und Ultrapro mit unregelm{\"a}ßigen hexagonalen Netzporen.}, language = {en} } @article{BirgelLeschingerWegmannetal.2018, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in the shoulder area via an OpenSim based computer model}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7113}, doi = {10.1515/teme-2017-0114}, pages = {321 -- 330}, year = {2018}, abstract = {Using the OpenSim software and verified anatomical data, a computer model for the calculation of biomechanical parameters is developed and used to determine the effect of a reattachment of the Supraspinatus muscle with a medial displacement of the muscle attachment point, which may be necessary for a rupture of the supraspinatus tendon. The results include the influence of the operation on basic biomechanical parameters such as the lever arm, as well as the calculated the muscle activations for the supraspinatus and deltoid. In addition, the influence on joint stability is examined by an analysis of the joint reaction force. The study provides a detailed description of the used model, as well as medical findings to a reattachment of the supraspinatus. Mit der Software OpenSim und {\"u}berpr{\"u}ften anatomischen Daten wird ein Computermodell zur Berechnung von biomechanischen Parametern entwickelt und genutzt, um den Effekt einer Refixierung des Supraspinatusmuskels mit einer medialen Verschiebung des Muskelansatzpunktes zu ermitteln, wie sie unter anderem nach einem Riss der Supraspinatussehne notwendig sein kann. Die Ergebnisse umfassen hierbei den Einfluss der Operation auf grundlegende biomechanische Parameter wie den Hebelarm sowie die berechneten Muskelaktivierungen f{\"u}r den Supraspinatus und Deltoideus. Zus{\"a}tzlich wird der Einfluss auf die Gelenkstabilit{\"a}t betrachtet und durch eine Analyse der Gelenkreaktionskraft untersucht. Die Studie bietet eine detaillierte Beschreibung des genutzten Modells, sowie medizinische Erkenntnisse zu einer Refixierung des Supraspinatus.}, language = {en} } @article{OberlaenderMayerGreeffetal.2018, author = {Oberl{\"a}nder, Jan and Mayer, Marlena and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes}, series = {Biosensors and Bioelectronics}, volume = {104}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2017.12.045}, pages = {87 -- 94}, year = {2018}, abstract = {In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.}, language = {en} } @incollection{BhattaraiFrotscherStaat2018, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Computational Analysis of Pelvic Floor Dysfunction}, series = {Women's Health and Biomechanics}, booktitle = {Women's Health and Biomechanics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-71574-2}, doi = {10.1007/978-3-319-71574-2_17}, pages = {217 -- 230}, year = {2018}, abstract = {Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence.}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions}, series = {Computational and Mathematical Methods in Medicine}, volume = {2018}, journal = {Computational and Mathematical Methods in Medicine}, number = {Article ID 9518076}, publisher = {Hindawi}, address = {New York, NY}, issn = {1748-6718}, doi = {10.1155/2018/9518076}, pages = {1 -- 16}, year = {2018}, abstract = {After menopause, decreased levels of estrogen and progesterone remodel the collagen of the soft tissues thereby reducing their stiffness. Stress urinary incontinence is associated with involuntary urine leakage due to pathological movement of the pelvic organs resulting from lax suspension system, fasciae, and ligaments. This study compares the changes in the orientation and position of the female pelvic organs due to weakened fasciae, ligaments, and their combined laxity. A mixture theory weighted by respective volume fraction of elastin-collagen fibre compound (5\%), adipose tissue (85\%), and smooth muscle (5\%) is adopted to characterize the mechanical behaviour of the fascia. The load carrying response (other than the functional response to the pelvic organs) of each fascia component, pelvic organs, muscles, and ligaments are assumed to be isotropic, hyperelastic, and incompressible. Finite element simulations are conducted during Valsalva manoeuvre with weakened tissues modelled by reduced tissue stiffness. A significant dislocation of the urethrovesical junction is observed due to weakness of the fascia (13.89 mm) compared to the ligaments (5.47 mm). The dynamics of the pelvic floor observed in this study during Valsalva manoeuvre is associated with urethral-bladder hypermobility, greater levator plate angulation, and positive Q-tip test which are observed in incontinent females.}, language = {en} } @article{JungMuellerStaat2018, author = {Jung, Alexander and M{\"u}ller, Wolfram and Staat, Manfred}, title = {Wind and fairness in ski jumping: A computer modelling analysis}, series = {Journal of Biomechanics}, journal = {Journal of Biomechanics}, number = {75}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.05.001}, pages = {147 -- 153}, year = {2018}, abstract = {Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping.}, language = {en} } @article{JungStaatMueller2018, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Corrigendum to "Flight style optimization in ski jumping on normal, large, and ski flying hills" [J. Biomech 47 (2014) 716-722]}, series = {Journals of Biomechanics}, journal = {Journals of Biomechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.02.001}, pages = {313}, year = {2018}, language = {en} }