@inproceedings{KernImaniVashianiTimmermanns2021, author = {Kern, Alexander and Imani Vashiani, Anahita and Timmermanns, Tobias}, title = {Threat for human beings due to touch voltages and body currents caused by direct lightning strikes in case of non-isolated lightning protection systems using natural components}, series = {35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA)}, booktitle = {35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA)}, publisher = {IEEE}, isbn = {978-1-6654-2346-5}, doi = {10.1109/ICLPandSIPDA54065.2021.9627465}, pages = {8 Seiten}, year = {2021}, abstract = {For typical cases of non-isolated lightning protection systems (LPS) the impulse currents are investigated which may flow through a human body directly touching a structural part of the LPS. Based on a basic LPS model with conventional down-conductors especially the cases of external and internal steel columns and metal fa{\c{c}}ades are considered and compared. Numerical simulations of the line quantities voltages and currents in the time domain are performed with an equivalent circuit of the entire LPS. As a result it can be stated that by increasing the number of conventional down-conductors and external steel columns the threat for a human being can indeed be reduced, but not down to an acceptable limit. In case of internal steel columns used as natural down-conductors the threat can be reduced sufficiently, depending on the low-resistive connection of the steel columns to the lightning equipotential bonding or the earth termination system, resp. If a metal fa{\c{c}}ade is used the threat for human beings touching is usually very low, if the fa{\c{c}}ade is sufficiently interconnected and multiply connected to the lightning equipotential bonding or the earth termination system, resp.}, language = {en} } @inproceedings{BirklDiendorferKernetal.2017, author = {Birkl, Josef and Diendorfer, Gerhard and Kern, Alexander and Thern, Stephan}, title = {Extrem hohe Blitzstr{\"o}me}, series = {12. VDE/ABB-Blitzschutztagung : Beitr{\"a}ge der 12. VDE/ABB-Fachtagung, 12.-13. Oktober 2017, Aschaffenburg}, booktitle = {12. VDE/ABB-Blitzschutztagung : Beitr{\"a}ge der 12. VDE/ABB-Fachtagung, 12.-13. Oktober 2017, Aschaffenburg}, isbn = {978-3-8007-4459-6}, pages = {146 -- 152}, year = {2017}, language = {de} } @inproceedings{KernBrocke2017, author = {Kern, Alexander and Brocke, Ralph}, title = {Planung von Fangeinrichtungen mit dem dynamischen elektro-geometrischen Modell - M{\"o}gliche praktische Anwendungen}, series = {12. VDE/ABB-Blitzschutztagung : Beitr{\"a}ge der 12. VDE/ABB-Fachtagung, 12.-13. Oktober 2017, Aschaffenburg}, booktitle = {12. VDE/ABB-Blitzschutztagung : Beitr{\"a}ge der 12. VDE/ABB-Fachtagung, 12.-13. Oktober 2017, Aschaffenburg}, isbn = {978-3-8007-4459-6}, pages = {75 -- 82}, year = {2017}, language = {de} } @inproceedings{Kern2017, author = {Kern, Alexander}, title = {Optimierung des Blitzschutzes bei Biogasanlagen}, series = {12. VDE/ABB-Blitzschutztagung : Beitr{\"a}ge der 12. VDE/ABB-Fachtagung, 12.-13. Oktober 2017, Aschaffenburg}, booktitle = {12. VDE/ABB-Blitzschutztagung : Beitr{\"a}ge der 12. VDE/ABB-Fachtagung, 12.-13. Oktober 2017, Aschaffenburg}, isbn = {978-3-8007-4459-6}, pages = {48 -- 56}, year = {2017}, language = {de} } @inproceedings{BirklDiendorferKernetal.2018, author = {Birkl, Josef and Diendorfer, Gerhard and Kern, Alexander and Thern, Stephan}, title = {Extremely high lightning peak currents}, series = {34th International Conference on Ligntning Protection, 02-07 September 2018}, booktitle = {34th International Conference on Ligntning Protection, 02-07 September 2018}, isbn = {978-1-5386-6635-7}, pages = {7 Seiten}, year = {2018}, language = {en} } @inproceedings{KernBraun2014, author = {Kern, Alexander and Braun, Christian}, title = {Risk management according to IEC 62305-2 edition 2: 2010-12 assessment of structures with a risk of explosion}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {1237 -- 1242}, year = {2014}, abstract = {Risk management for structures with a risk of explosion should be considered very carefully when performing a risk analysis according to IEC 62305-2. In contrast to the 2006 edition of the standard, the 2010 edition describes the topic "Structures with a risk of explosion" in more detail. Moreover, in Germany separate procedures and parameters are defined for the risk analysis of structures with a risk of explosion (Supplement 3 of the German DIN EN 62305-2 standard). This paper describes the contents and the relevant calculations of this Supplement 3, together with a numerical example.}, language = {en} } @inproceedings{RousseauKern2014, author = {Rousseau, Alain and Kern, Alexander}, title = {How to deal with environmental risk in IEC 62305-2}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {521 -- 527}, year = {2014}, abstract = {The 2nd edition of the lightning risk management standard (IEC 62305-2) considers structures, which may endanger environment. In these cases, the loss is not limited to the structure itself, which is valid for usual structures. In the past (Edition 1) this danger was simply taken into account by a special hazard factor, multiplying the existing risk for the structure with a number. Now, in the edition 2, we add to the risk for the structure itself a "second risk" due to the losses outside the structure. The losses outside can be treated independently from what occurs inside. This is a major advantage to analyze the risk for sensitive structures, like chemical plants, nuclear plants, or structures containing explosives, etc. In this paper, the existing procedure given by the European version EN 62305-2 Ed.2 is further developed and applied to a few structures.}, language = {en} } @inproceedings{LoPiparoKernMazzetti2012, author = {Lo Piparo, G. B. and Kern, Alexander and Mazzetti, C.}, title = {Some masterpoints about risk due to lightning}, series = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, booktitle = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Conference on Lightning Protection <2012, Wien>}, isbn = {978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print)}, pages = {1 -- 6}, year = {2012}, language = {en} } @inproceedings{KernSchelthoffMathieu2012, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Calculation of interception efficiencies for mesh-type air-terminations according to IEC 62305-3 using a dynamic electro-geometrical model}, series = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, booktitle = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Conference on Lightning Protection <2012, Wien>}, isbn = {978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print)}, pages = {1 -- 6}, year = {2012}, language = {en} } @inproceedings{WetterKern2014, author = {Wetter, Martin and Kern, Alexander}, title = {Number of lightning strikes to tall structures - comparison of calculations and measurements using a modern lightning monitoring system}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {1 -- 7}, year = {2014}, language = {en} }