@article{AlKaidyDuweHusteretal.2015, author = {Al-Kaidy, Huschyar and Duwe, Anna and Huster, Manuel and Muffler, Kai and Schlegel, Christin and Tim, Sieker and Stadtm{\"u}ller, Ralf and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Biotechnology and bioprocess engineering - from the first ullmann's article to recent trends}, series = {ChemBioEng Reviews}, volume = {2}, journal = {ChemBioEng Reviews}, number = {3}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cben.201500008}, pages = {175 -- 184}, year = {2015}, abstract = {For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed.}, language = {en} } @article{BreuerRaueKirschbaumetal.2015, author = {Breuer, Lars and Raue, Markus and Kirschbaum, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431944}, pages = {1368 -- 1374}, year = {2015}, abstract = {Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed.}, language = {en} } @article{CehreliAkpinarTemizArtmannetal.2015, author = {Cehreli, Ruksan and Akpinar, Hale and Temiz Artmann, Ayseg{\"u}l and Sagol, Ozgul}, title = {Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis}, series = {Gastroenterology Research}, volume = {8}, journal = {Gastroenterology Research}, number = {5}, issn = {1918-2813}, doi = {10.14740/gr683w}, pages = {265 -- 273}, year = {2015}, language = {en} } @article{HagerHentschkeHojdisetal.2015, author = {Hager, Jonathan and Hentschke, Reinhard and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite}, series = {Macromolecules}, volume = {48}, journal = {Macromolecules}, number = {24}, issn = {1520-5835}, doi = {10.1021/acs.macromol.5b01864}, pages = {9039 -- 9049}, year = {2015}, language = {en} } @article{HendersonMclaughlinScheeretal.2015, author = {Henderson, Colin J. and Mclaughlin, Lesley A. and Scheer, Nico and Stanley, Lesley A. and Wolf, C. Roland}, title = {Cytochrome b5 Is a Major Determinant of Human Cytochrome P450 CYP2D6 and CYP3A4 Activity In Vivo s}, series = {Molecular Pharmacology}, volume = {87}, journal = {Molecular Pharmacology}, number = {4}, publisher = {ASPET}, address = {Bethesda}, issn = {1521-0111}, doi = {10.1124/mol.114.097394}, pages = {733 -- 739}, year = {2015}, language = {en} } @article{HoughNalwalkDingetal.2015, author = {Hough, Lindsay B. and Nalwalk, Julia W. and Ding, Xinxin and Scheer, Nico}, title = {Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms}, series = {Drug Metabolism and Disposition}, volume = {43}, journal = {Drug Metabolism and Disposition}, number = {9}, issn = {1521-009x}, doi = {10.1124/dmd.115.065490}, pages = {1326 -- 1330}, year = {2015}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @article{PaulssenHoehrHouetal.2015, author = {Paulßen, Elisabeth and Hoehr, Cornelia and Hou, Xinchi and Hanemaayer, Victoire and Zeisler, Stefan and Adam, Michael J. and Ruth, Thomas J. and Celler, Anna and Buckley, Ken and Benard, Francois and Schaffer, Paul}, title = {Production of Y-86 and other radiometals for research purposes using a solution target system}, series = {Nuclear medicine and biology}, volume = {42}, journal = {Nuclear medicine and biology}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-9614}, doi = {10.1016/j.nucmedbio.2015.06.005}, pages = {842 -- 849}, year = {2015}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @article{PilasMarianoKeusgenetal.2015, author = {Pilas, Johanna and Mariano, K. and Keusgen, M. and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.702}, pages = {532 -- 535}, year = {2015}, language = {en} }