@incollection{SrivastavaKnolleHoyleretal.2015, author = {Srivastava, Alok and Knolle, Friedhart and Hoyler, Friedrich and Scherer, Ulrich W. and Schnug, Ewald}, title = {Uranium Toxicity in the State of Punjab in North-Western India}, series = {Management of Natural Resources in a Changing Environment}, booktitle = {Management of Natural Resources in a Changing Environment}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12559-6}, doi = {10.1007/978-3-319-12559-6_21}, pages = {271 -- 275}, year = {2015}, abstract = {Lately there has been an increasing concern about uranium toxicity in some districts of Punjab State located in the North Western part of India after the publication of a report (Blaurock-Busch et al. 2010) which showed that the concentration of uranium in hair and urine of children suffering from physical deformities, neurological and mental disorder from Malwa region (Fig. 1) of Punjab State was manifold higher than the reference ranges. A train which connects the affected region with the nearby city of Bikaner which has a Cancer Hospital has been nicknamed as Cancer Express due to the frenzy generated on account of uranium related toxicity.}, language = {en} } @incollection{SeiblerSchwenk2010, author = {Seibler, Jost and Schwenk, Frieder}, title = {Transgenic RNAi Applications in the Mouse}, series = {Methods in Enzymology : Guide to Techniques in Mouse Development, Part B: Mouse Molecular Genetics. 2nd Edition}, booktitle = {Methods in Enzymology : Guide to Techniques in Mouse Development, Part B: Mouse Molecular Genetics. 2nd Edition}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-384880-2}, pages = {367 -- 386}, year = {2010}, language = {en} } @incollection{HendersonWolfScheer2009, author = {Henderson, Colin J. and Wolf, C. Roland and Scheer, Nico}, title = {The use of transgenic animals to study drug metabolism}, series = {Handbook of Drug Metabolism. 2nd Edition}, booktitle = {Handbook of Drug Metabolism. 2nd Edition}, editor = {Woolf, Thomas F.}, publisher = {Informa Healthcare}, address = {New York}, isbn = {978-1-4200-7647-9}, pages = {637 -- 658}, year = {2009}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @incollection{MedlinBarkerBaumannetal.1994, author = {Medlin, L. K. and Barker, G. L. A. and Baumann, Marcus and Hayes, P. K.}, title = {Molecular biology and systematics}, series = {The Haptophyte Algae (Special volume / Systematics Association : 51)}, booktitle = {The Haptophyte Algae (Special volume / Systematics Association : 51)}, publisher = {Clarendon Press}, address = {Oxford}, isbn = {0-19-857772-9}, pages = {393 -- 411}, year = {1994}, language = {en} } @incollection{TippkoetterMoehringRothetal.2019, author = {Tippk{\"o}tter, Nils and M{\"o}hring, Sophie and Roth, Jasmine and Wulfhorst, Helene}, title = {Logistics of lignocellulosic feedstocks: preprocessing as a preferable option}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97117-9}, doi = {10.1007/10_2017_58}, pages = {43 -- 68}, year = {2019}, abstract = {In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material.}, language = {en} } @incollection{DuweTippkoetterUlber2018, author = {Duwe, A. and Tippk{\"o}tter, Nils and Ulber, R.}, title = {Lignocellulose-Biorefinery: Ethanol-Focused}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, doi = {10.1007/10_2016_72}, pages = {177 -- 215}, year = {2018}, abstract = {The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.}, language = {en} } @incollection{ScheerChuSalphatietal.2016, author = {Scheer, Nico and Chu, Xiaoyan and Salphati, Laurent and Zamek-Gliszczynski, Maciej J.}, title = {Knockout and humanized animal models to study membrane transporters in drug development}, series = {Drug Transporters: Volume 1: Role and Importance in ADME and Drug Development}, booktitle = {Drug Transporters: Volume 1: Role and Importance in ADME and Drug Development}, editor = {Nicholls, Glynis}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-379-3}, doi = {10.1039/9781782623793-00298}, pages = {298 -- 332}, year = {2016}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @incollection{SamuelssonScheerWilsonetal.2017, author = {Samuelsson, K. and Scheer, Nico and Wilson, I. and Wolf, C.R. and Henderson, C.J.}, title = {Genetically Humanized Animal Models}, series = {Comprehensive Medicinal Chemistry III. 3rd Edition}, booktitle = {Comprehensive Medicinal Chemistry III. 3rd Edition}, editor = {Chackalamannil, Samuel}, publisher = {Elsevier}, address = {Saint Louis}, isbn = {978-0-12-803201-5}, doi = {10.1016/B978-0-12-409547-2.12376-5}, pages = {130 -- 149}, year = {2017}, abstract = {Genetically humanized mice for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging as promising in vivo models for improved prediction of the pharmacokinetic, drug-drug interaction, and safety characteristics of compounds in humans. This is an overview on the genetically humanized and chimeric liver-humanized mouse models, which are illustrated with examples of their utility in drug metabolism and toxicity studies. The models are compared to give guidance for selection of the most appropriate model by highlighting advantages and disadvantages to be carefully considered when used for studies in drug discovery and development.}, language = {en} }