@inproceedings{RingsLudowicyFingeretal.2019, author = {Rings, Ren{\´e} and Ludowicy, Jonas and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Sensitivity Analysis of General Aviation Aircraft with Parallel Hybrid-Electric Propulsion Systems}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @article{GoettenHavermannBraunetal.2019, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bil, Cees}, title = {RANS Simulation Validation of a Small Sensor Turret for UAVs}, series = {Journal of Aerospace Engineering}, volume = {32}, journal = {Journal of Aerospace Engineering}, number = {5}, publisher = {ASCE}, address = {New York}, issn = {1943-5525}, doi = {10.1061/(ASCE)AS.1943-5525.0001055}, pages = {Article number 04019060}, year = {2019}, abstract = {Recent Unmanned Aerial Vehicle (UAV) design procedures rely on full aircraft steady-state Reynolds-Averaged-Navier-Stokes (RANS) analyses in early design stages. Small sensor turrets are included in such simulations, even though their aerodynamic properties show highly unsteady behavior. Very little is known about the effects of this approach on the simulation outcomes of small turrets. Therefore, the flow around a model turret at a Reynolds number of 47,400 is simulated with a steady-state RANS approach and compared to experimental data. Lift, drag, and surface pressure show good agreement with the experiment. The RANS model predicts the separation location too far downstream and shows a larger recirculation region aft of the body. Both characteristic arch and horseshoe vortex structures are visualized and qualitatively match the ones found by the experiment. The Reynolds number dependence of the drag coefficient follows the trend of a sphere within a distinct range. The outcomes indicate that a steady-state RANS model of a small sensor turret is able to give results that are useful for UAV engineering purposes but might not be suited for detailed insight into flow properties.}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, Cees}, title = {Mass, Primary Energy, and Cost - The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, doi = {10.25967/490012}, pages = {1 -- 17}, year = {2019}, language = {en} } @article{FingerBilBraun2019, author = {Finger, Felix and Bil, Cees and Braun, Carsten}, title = {Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {2}, issn = {1533-3868}, doi = {10.2514/1.C035428}, pages = {245 -- 255}, year = {2019}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2019, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{FingerBraunBil2019, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft}, series = {AIAA Scitech 2019 Forum}, booktitle = {AIAA Scitech 2019 Forum}, doi = {10.2514/6.2019-1812}, year = {2019}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, Cees}, title = {Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {1 -- 13}, year = {2019}, language = {en} } @inproceedings{GoettenFingerMarinoetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Marino, Matthew and Bil, Cees and Havermann, Marc and Braun, Carsten}, title = {A review of guidelines and best practices for subsonic aerodynamic simulations using RANS CFD}, series = {Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019}, isbn = {978-1-925627-40-4}, pages = {19 Seiten}, year = {2019}, language = {de} } @inproceedings{GoettenFingerHavermannetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {A highly automated method for simulating airfoil characteristics at low Reynolds number using a RANS - transition approach}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, doi = {10.25967/490026}, pages = {1 -- 14}, year = {2019}, language = {en} }