@book{UibelPeterson2019, author = {Uibel, Thomas and Peterson, Leif Arne}, title = {Tagungsband Aachener Holzbautagung 2019}, editor = {Uibel, Thomas and Peterson, Leif Arne}, publisher = {FH Aachen}, address = {Aachen}, issn = {2197-4489}, pages = {140 Seiten ; Illustrationen, graph. Darst.}, year = {2019}, language = {de} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Paulsen, G{\o}ran and Larsen, Askild V. and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running}, series = {PeerJ}, journal = {PeerJ}, publisher = {Peer}, address = {London}, issn = {21678359}, doi = {10.7717/peerj.6764}, pages = {18 Seiten}, year = {2019}, abstract = {Background During the stance phase of running, the elasticity of the Achilles tendon enables the utilisation of elastic energy and allows beneficial contractile conditions for the triceps surae muscles. However, the effect of changes in tendon mechanical properties induced by chronic loading is still poorly understood. We tested the hypothesis that a training-induced increase in Achilles tendon stiffness would result in reduced tendon strain during the stance phase of running, which would reduce fascicle strains in the triceps surae muscles, particularly in the mono-articular soleus. Methods Eleven subjects were assigned to a training group performing isometric singleleg plantarflexion contractions three times per week for ten weeks, and another ten subjects formed a control group. Before and after the training period, Achilles tendon stiffness was estimated, and muscle-tendon mechanics were assessed during running at preferred speed using ultrasonography, kinematics and kinetics. Results Achilles tendon stiffness increased by 18\% (P <0:01) in the training group, but the associated reduction in strain seen during isometric contractions was not statistically significant. Tendon elongation during the stance phase of running was similar after training, but tendon recoil was reduced by 30\% (P <0:01), while estimated tendon force remained unchanged. Neither gastrocnemius medialis nor soleus fascicle shortening during stance was affected by training. Discussion These results show that a training-induced increase in Achilles tendon stiffness altered tendon behaviour during running. Despite training-induced changes in tendon mechanical properties and recoil behaviour, the data suggest that fascicle shortening patterns were preserved for the running speed that we examined. The asymmetrical changes in tendon strain patterns supports the notion that simple inseries models do not fully explain the mechanical output of the muscle-tendon unit during a complex task like running.}, language = {en} } @misc{BlottnerHastermannMuckeltetal.2019, author = {Blottner, Dieter and Hastermann, Maria and Muckelt, Paul and Albracht, Kirsten and Schoenrock, Britt and Salanova, Michele and Warner, Martin and Gunga, Hans-Christian and Stokes, Maria}, title = {MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study}, series = {IAC Papers Archive}, journal = {IAC Papers Archive}, publisher = {Pergamon}, address = {Oxford}, issn = {00741795}, pages = {2 Seiten}, year = {2019}, abstract = {The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored}, language = {en} } @inproceedings{KetelhutGoellBraunsteinetal.2019, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Iterative learning control of an industrial robot for neuromuscular training}, series = {2019 IEEE Conference on Control Technology and Applications}, booktitle = {2019 IEEE Conference on Control Technology and Applications}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-2767-5 (ePub)}, doi = {10.1109/CCTA.2019.8920659}, pages = {7 Seiten}, year = {2019}, abstract = {Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations.}, language = {en} } @article{KetelhutKolditzGoelletal.2019, author = {Ketelhut, Maike and Kolditz, Melanie and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Admittance control of an industrial robot during resistance training}, series = {IFAC-PapersOnLine}, volume = {52}, journal = {IFAC-PapersOnLine}, number = {19}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2019.12.102}, pages = {223 -- 228}, year = {2019}, abstract = {Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories.}, language = {en} } @misc{OPUS4-10850, title = {Ordnung zur {\"A}nderung der Pr{\"u}fungsordnung f{\"u}r die Bachelorstudieng{\"a}nge „Schienenfahrzeugtechnik" „Schienenfahrzeugtechnik (Teilzeit)" und „Dualer Studiengang Schienenfahrzeugtechnik (DIRail)" im Fachbereich Maschinenbau und Mechatronik an der Fachhochschule Aachen}, organization = {FH Aachen}, pages = {2}, year = {2019}, language = {de} } @misc{OPUS4-10851, title = {Pr{\"u}fungsordnung f{\"u}r die Bachelorstudieng{\"a}nge „Schienenfahrzeugtechnik" „Schienenfahrzeugtechnik (Teilzeit)" und „Dualer Studiengang Schienenfahrzeugtechnik (DIRail)" im Fachbereich Maschinenbau und Mechatronik an der Fachhochschule Aachen}, organization = {FH Aachen}, pages = {14 Seiten}, year = {2019}, language = {de} } @misc{OPUS4-10862, title = {Ordnung zur {\"A}nderung der Ordnung zur Aufhebung der Studien- und Pr{\"u}fungsordnung f{\"u}r den Masterstudiengang „Bauingenieurwesen" vom 10. Dezember 2012 (FH-Mitteilung Nr. 129/2012) in der Fassung der Bekanntmachung der {\"A}nderungsordnungen vom 30. Mai 2017 (FH-Mitteilung Nr. 58/2017) an der Fachhochschule Aachen}, organization = {FH Aachen}, pages = {2 Seiten}, year = {2019}, language = {de} } @misc{OPUS4-10864, title = {Ordnung zur {\"A}nderung der Ordnung zur Aufhebung der Studien- und Pr{\"u}fungsordnung f{\"u}r den Masterstudiengang „Facility Management" vom 29. November 2012 (FH-Mitteilung Nr. 127/2012) in der Fassung der Bekanntmachung der {\"A}nderungsordnungen vom 3. Februar 2016 (FH-Mitteilung Nr. 10/2016) an der Fachhochschule Aachen}, organization = {FH Aachen}, pages = {2 Seiten}, year = {2019}, language = {de} } @misc{OPUS4-10865, title = {Studien- und Pr{\"u}fungsordnung f{\"u}r den Bachelorstudiengang Bauingenieurwesen (7-semestrig), Bachelorstudiengang Bauingenieurwesen mit Praxissemester (8-semestrig) und Bachelorstudiengang Bauingenieurwesen mit Auslandssemester (8-semestrig) Abschluss Bachelor of Engineering}, organization = {FH Aachen}, pages = {26 Seiten}, year = {2019}, language = {de} }