@article{Huening2008, author = {H{\"u}ning, Felix}, title = {Entwicklungstrends bei MOSFETs f{\"u}r den Automobilbereich}, series = {Elektronik-Industrie . 39 (2008), H. 5}, journal = {Elektronik-Industrie . 39 (2008), H. 5}, publisher = {-}, isbn = {0174-5522}, pages = {74 -- 76}, year = {2008}, language = {en} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {SMD packages for PowerMOSFETs in automotive applications - developments and trends}, series = {Automotive Designline Europe (2009)}, journal = {Automotive Designline Europe (2009)}, publisher = {-}, year = {2009}, language = {en} } @article{Huening2012, author = {H{\"u}ning, Felix}, title = {Using Trench PowerMOSFETs in Linear Mode}, series = {Power Electronics Europe (2012)}, journal = {Power Electronics Europe (2012)}, publisher = {DFA Media}, address = {Tonbridge}, issn = {1748-3530}, pages = {27 -- 29}, year = {2012}, abstract = {If we think about applications for modern Power MOSFETs using trench technology, running them in linear mode may not be top of the priority list. Yet there are multiple uses for Trench Power MOSFETs in linear mode. In fact, even turning the device on and off in switching applications is a form of linear operation. Also, these components can be run in linear mode to protect the device against voltage surges. This article will illustrate the factors that need to be considered for linear operation and show how Trench Power MOSFETs are suited to it.}, language = {en} } @article{HueningBackes2020, author = {H{\"u}ning, Felix and Backes, Andreas}, title = {Direct observation of large Barkhausen jump in thin Vicalloy wires}, series = {IEEE Magnetics Letters}, volume = {11}, journal = {IEEE Magnetics Letters}, number = {Art. 2506504}, publisher = {IEEE}, address = {New York, NY}, isbn = {1949-307X}, doi = {10.1109/LMAG.2020.3046411}, pages = {1 -- 4}, year = {2020}, language = {en} } @article{HueningEifertHandricketal.2006, author = {H{\"u}ning, Felix and Eifert, T. and Handrick, K. and Neuhausen, U.}, title = {Computational Magnetochemistry: Complementary Quantum Mechanical Tools / Eifert, T. ; Handrick, K. ; H{\"u}ning, F. ; Neuhausen, U. ; Schilder, H. ; Lueken, H.}, series = {Zeitschrift f{\"u}r Anorganische und Allgemeine Chemie (ZAAC) - Journal of Inorganic and General Chemistry . 632 (2006), H. 4}, journal = {Zeitschrift f{\"u}r Anorganische und Allgemeine Chemie (ZAAC) - Journal of Inorganic and General Chemistry . 632 (2006), H. 4}, publisher = {-}, isbn = {1521-3749}, pages = {521 -- 529}, year = {2006}, language = {en} } @article{HueningEifertHandricketal.2006, author = {H{\"u}ning, Felix and Eifert, T. and Handrick, K. and Neuhausen, U.}, title = {Computational Magnetochemistry: Complementary Quantum Mechanical Tools / Eifert, T. ; Handrick, K. ; H{\"u}ning, F. ; Neuhausen, U. ; Schilder, H. ; Lueken, H.}, series = {20 Jahre Wilhelm-Klemm-Stiftung / Kuratorium der Wilhelm-Klemm-Stiftung (Hrsg.)}, journal = {20 Jahre Wilhelm-Klemm-Stiftung / Kuratorium der Wilhelm-Klemm-Stiftung (Hrsg.)}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8322-5520-6}, pages = {193ff}, year = {2006}, language = {en} } @article{HueningEifertLuekenetal.2002, author = {H{\"u}ning, Felix and Eifert, T. and Lueken, H. and Schmidt, P.}, title = {High-temperature series expansion of the magnetic susceptibility of extended magnetic systems in a complete computer implementation / Eifert, T. ; H{\"u}ning, F. ; Lueken, H. ; Schmidt, P. ; Thiele, G.}, series = {Chemical Physics Letters. 364 (2002), H. 1-2}, journal = {Chemical Physics Letters. 364 (2002), H. 1-2}, publisher = {-}, isbn = {0009-2614}, pages = {69 -- 74}, year = {2002}, language = {en} } @article{HueningHeuermannWache2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef}, title = {Wireless CAN without WLAN or Bluetooth}, series = {CAN Newsletter}, journal = {CAN Newsletter}, number = {December 2018}, pages = {44 -- 46}, year = {2018}, abstract = {In two developed concepts, dual-mode radio enables CAN participants to be integrated wirelessly into a CAN network. Constructed from a few components, a protocol-free, real-time transmission and thus transparent integration into CAN is provided.}, language = {en} } @article{HueningHeuermannWacheetal.2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef and Jajo, Rami Audisho}, title = {A new wireless sensor interface using dual-mode radio}, series = {Journal of Sensors and Sensor Systems : JSSS}, volume = {Volume 7}, journal = {Journal of Sensors and Sensor Systems : JSSS}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, doi = {10.5194/jsss-7-507-2018}, pages = {507 -- 515}, year = {2018}, abstract = {The integration of sensors is one of the major tasks in embedded, control and "internet of things" (IoT) applications. For the integration mainly digital interfaces are used, starting from rather simple pulse-width modulation (PWM) interface to more complex interfaces like CAN (Controller Area Network). Even though these interfaces are tethered by definition, a wireless realization is highly welcome in many applications to reduce cable and connector cost, increase the flexibility and realize new emerging applications like wireless control systems. Currently used wireless solutions like Bluetooth, WirelessHART or IO-Link Wireless use dedicated communication standards and corresponding higher protocol layers to realize the wireless communication. Due to the complexity of the communication and the protocol handling, additional latency and jitter are introduced to the data communication that can meet the requirements for many applications. Even though tunnelling of other bus data like CAN data is generally also possible the latency and jitter prevent the tunnelling from being transparent for the bus system. Therefore a new basic technology based on dual-mode radio is used to realize a wireless communication on the physical layer only, enabling a reliable and real-time data transfer. As this system operates on the physical layer it is independent of any higher layers of the OSI (open systems interconnection) model. Hence it can be used for several different communication systems to replace the tethered physical layer. A prototype is developed and tested for real-time wireless PWM, SENT (single-edge nibble transmission) and CAN data transfer with very low latency and jitter.}, language = {en} } @article{HueningJaekelFrancoisetal.1996, author = {H{\"u}ning, Felix and Jaekel, C. and Francois, I. and Kyas, G.}, title = {Microwave surface impedance measurements on high-Tc superconductors / Jaekel, C. ; Francois, I. ; Kyas, G. ; H{\"u}ning, F. ; Roskos, H. G. ; Borghs, G. ; Kurz, H.}, series = {Czechoslovak Journal of Physics. 46 (1996), H. Suppl. 2}, journal = {Czechoslovak Journal of Physics. 46 (1996), H. Suppl. 2}, number = {46}, publisher = {Springer Science+Business Media}, address = {Dordrecht}, isbn = {1572-9486}, pages = {1117 -- 1118}, year = {1996}, language = {en} }