@misc{MachadoDahmannKeimeretal.2020, author = {Machado, Patricia Almeida and Dahmann, Peter and Keimer, Jona and Saretzki, Charlotte and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Stress profile and individual workload monitoring in general aviation pilots - an experiment's setting}, series = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, journal = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, doi = {10.55225/hppa.156}, year = {2020}, language = {en} } @misc{EcclestonDrummondMiddletonetal.2020, author = {Eccleston, Paul and Drummond, Rachel and Middleton, Kevin and Bishop, Georgia and Caldwell, Andrew and Desjonqueres, Lucile and Tosh, Ian and Cann, Nick and Crook, Martin and Hills, Matthew and Pearson, Chris and Simpson, Caroline and Stamper, Richard and Tinetti, Giovanna and Pascale, Enzo and Swain, Mark and Holmes, Warren A. and Wong, Andre and Puig, Ludovic and Pilbratt, G{\"o}ran and Linder, Martin and Boudin, Nathalie and Ertel, Hanno and Gambicorti, Lisa and Halain, Jean-Philippe and Pace, Emanuele and Vilardell, Francesc and G{\´o}mez, Jos{\´e} M. and Colom{\´e}, Josep and Amiaux, J{\´e}r{\^o}me and Cara, Christophe and Berthe, Michel and Moreau, Vincent and Morgante, Gianluca and Malaguti, Giuseppe and Alonso, Gustavo and {\´A}lvarez, Javier P. and Ollivier, Marc and Philippon, Anne and Hellin, Marie-Laure and Roose, Steve and Frericks, Martin and Krijger, Matthijs and Rataj, Miroslaw and Wawer, Piotr and Skup, Konrad and Sobiecki, Mateusz and Christian Jessen, Niels and M{\o}ller Pedersen, S{\o}ren and Hargrave, Peter and Griffin, Matt and Ottensamer, Roland and Hunt, Thomas and Rust, Duncan and Saleh, Aymen and Winter, Berend and Focardi, Mauro and Da Deppo, Vania and Zuppella, Paola and Czupalla, Markus}, title = {The ARIEL payload: A technical overview}, series = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, volume = {11443}, journal = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, editor = {Lystrup, Makenzie and Perrin, Marshall D. and Batalha, Natalie and Siegler, Nicholas and Tong, Edward C.}, publisher = {SPIE}, address = {Washington}, doi = {10.1117/12.2561478}, pages = {114430Z}, year = {2020}, abstract = {The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.}, language = {en} } @inproceedings{TamaldinEschTonolietal.2020, author = {Tamaldin, Noreffendy and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia}, series = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, booktitle = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, publisher = {IEOM Society International}, address = {Southfield}, isbn = {978-1-7923-6123-4}, issn = {2169-8767}, pages = {2970 -- 2972}, year = {2020}, abstract = {The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @techreport{ThomaLaarmannMerkensetal.2020, author = {Thoma, Andreas and Laarmann, Lukas and Merkens, Torsten and Franzke, Till and M{\"o}hren, Felix and Buttermann, Lilly and van der Weem, Dirk and Fischer, Maximilian and Misch, Philipp and B{\"o}hme, Mirijam and R{\"o}th, Thilo and Hebel, Christoph and Ritz, Thomas and Franke, Marina and Braun, Carsten}, title = {Entwicklung eines intermodalen Mobilit{\"a}tskonzeptes f{\"u}r die Pilotregion NRW/Rhein-Maas Euregio und Schaffung voller Kundenakzeptanz durch Transfer von Standards aus dem PKW-Bereich auf ein Flugtaxi : Schlussbericht : Projektakronym: SkyCab (Kategorie B) : Laufzeit in Monaten: 6 : Hauptthema: Kategorie B: Innovative Ideen mit Bezug zu UAS/Flugtaxis}, publisher = {FH Aachen}, address = {Aachen}, pages = {97 Seiten}, year = {2020}, language = {de} } @inproceedings{HauggKreyerKemperetal.2020, author = {Haugg, Albert Thomas and Kreyer, J{\"o}rg and Kemper, Hans and Hatesuer, Katerina and Esch, Thomas}, title = {Heat exchanger for ORC. adaptability and optimisation potentials}, series = {IIR International Rankine 2020 Conference}, booktitle = {IIR International Rankine 2020 Conference}, doi = {10.18462/iir.rankine.2020.1224}, pages = {10 Seiten}, year = {2020}, abstract = {The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine's cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine.}, language = {en} } @inproceedings{ThomaFisherBraun2020, author = {Thoma, Andreas and Fisher, Alex and Braun, Carsten}, title = {Improving the px4 avoid algorithm by bio-inspired flight strategies}, series = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, booktitle = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, doi = {10.25967/530183}, pages = {10 Seiten}, year = {2020}, language = {en} } @article{Schueckhaus2020, author = {Sch{\"u}ckhaus, Ulrich}, title = {Die SkyCab-Erfinder im WFMG-Interview}, series = {Business in MG}, journal = {Business in MG}, number = {1}, pages = {6 -- 7}, year = {2020}, language = {de} } @inproceedings{ThomaFisherBertrandetal.2020, author = {Thoma, Andreas and Fisher, Alex and Bertrand, Olivier and Braun, Carsten}, title = {Evaluation of possible flight strategies for close object evasion from bumblebee experiments}, series = {Living Machines 2020: Biomimetic and Biohybrid Systems}, booktitle = {Living Machines 2020: Biomimetic and Biohybrid Systems}, editor = {Vouloutsi, Vasiliki and Mura, Anna and Tauber, Falk and Speck, Thomas and Prescott, Tony J. and Verschure, Paul F. M. J.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64312-6}, doi = {10.1007/978-3-030-64313-3_34}, pages = {354 -- 365}, year = {2020}, language = {en} } @inproceedings{AdamsLosekammCzupalla2020, author = {Adams, Moritz and Losekamm, Martin J. and Czupalla, Markus}, title = {Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 10}, year = {2020}, language = {en} } @article{GoettenFinger2020, author = {G{\"o}tten, Falk and Finger, Felix}, title = {PhoenAIX - Die modulare Transportdrohne}, series = {Ingenieurspiegel}, volume = {2020}, journal = {Ingenieurspiegel}, number = {1}, publisher = {Public Verlag}, address = {Bingen}, isbn = {1868-5919}, pages = {38 -- 40}, year = {2020}, abstract = {Die autonome, unbemannte Luftfahrt ist einer der Schl{\"u}sselsektoren f{\"u}r die Zukunft der Luftfahrt. In diesem rasant wachsenden Bereich nehmen senkrecht startende und senkrecht landende Flugzeuge (Vertical Take-Off and Landing - VTOL) einen besonderen Platz ein. Ein VTOL-Flugzeug (manchmal auch „Transitionsflugger{\"a}t" genannt) verbindet die Eigenschaft des Helikopters, {\"u}berall starten und landen zu k{\"o}nnen, mit den Geschwindigkeits-, Reichweiten und Flugdauervorteilen des Starrfl{\"u}glers. Grunds{\"a}tzlich wird die Senkrechtstart- und -landef{\"a}higkeit sowohl von zivilen als auch von milit{\"a}rischen Betreibern unbemannter Flugger{\"a}te (UAVs) gew{\"u}nscht. Trotzdem bietet der Markt nur eine geringe Anzahl von VTOL-UAVs, da qualitativ hochwertige Entw{\"u}rfe eine ausgesprochene Herausforderung in der Entwicklung darstellen. An der FH Aachen wird deshalb seit {\"u}ber 5 Jahren an der Auslegung und Analyse von solchen unbemannten VTOL Flugzeugen geforscht. Das neuste Projekt ist der Eigenentwurf einer großen, senkrechtstartenden Transportdrohne. Das „PhoenAIX" getaufte Flugger{\"a}t wird von Falk G{\"o}tten und Felix Finger im Rahmen einer EFRE-F{\"o}rderung entwickelt.}, language = {de} }