@article{MuesgenanntKoersMcNeilRadchenkoetal.2023, author = {Mues genannt Koers, Lucas and McNeil, S. W. and Radchenko, V. and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Production of Co-58m in a siphon-style liquid target on a medical cyclotron}, volume = {195}, number = {Art. 110734}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2023.110734}, year = {2023}, abstract = {We present the production of 58mCo on a small, 13 MeV medical cyclotron utilizing a siphon style liquid target system. Different concentrated iron(III)-nitrate solutions of natural isotopic distribution were irradiated at varying initial pressures and subsequently separated by solid phase extraction chromatography. The radio cobalt (58m/gCo and 56Co) was successfully produced with saturation activities of (0.35 ± 0.03) MBq μA-1 for 58mCo with a separation recovery of (75 ± 2) \% of cobalt after one separation step utilizing LN-resin.}, language = {en} } @article{MuesgenanntKoersPrevostPaulssenetal.2023, author = {Mues genannt Koers, Lucas and Prevost, David and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Density reduction effects on the production of [11C]CO2 in Nb-body targets on a medical cyclotron}, volume = {199}, number = {Art. 110911}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.apradiso.2023.110911}, year = {2023}, abstract = {Medical isotope production of 11C is commonly performed in gaseous targets. The power deposition of the proton beam during the irradiation decreases the target density due to thermodynamic mixing and can cause an increase of penetration depth and divergence of the proton beam. In order to investigate the difference how the target-body length influences the operation conditions and the production yield, a 12 cm and a 22 cm Nb-target body containing N2/O2 gas were irradiated using a 13 MeV proton cyclotron. It was found that the density reduction has a large influence on the pressure rise during irradiation and the achievable radioactive yield. The saturation activity of [11C]CO2 for the long target (0.083 Ci/μA) is about 10\% higher than in the short target geometry (0.075 Ci/μA).}, language = {en} } @article{NiedermeierPennerUsherovichetal.2023, author = {Niedermeier, Jana and Penner, Crystal and Usherovich, Samuel and B{\´e}langer-Champagne, Camille and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Optical Fibers as Dosimeter Detectors for Mixed Proton/Neutron Fields - A Biological Dosimeter}, series = {electronics}, volume = {12}, journal = {electronics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-9292}, doi = {10.3390/electronics12020324}, pages = {11 Seiten}, year = {2023}, abstract = {In recent years, proton therapy has gained importance as a cancer treatment modality due to its conformality with the tumor and the sparing of healthy tissue. However, in the interaction of the protons with the beam line elements and patient tissues, potentially harmful secondary neutrons are always generated. To ensure that this neutron dose is as low as possible, treatment plans could be created to also account for and minimize the neutron dose. To monitor such a treatment plan, a compact, easy to use, and inexpensive dosimeter must be developed that not only measures the physical dose, but which can also distinguish between proton and neutron contributions. To that end, plastic optical fibers with scintillation materials (Gd₂O₂S:Tb, Gd₂O₂S:Eu, and YVO₄:Eu) were irradiated with protons and neutrons. It was confirmed that sensors with different scintillation materials have different sensitivities to protons and neutrons. A combination of these three scintillators can be used to build a detector array to create a biological dosimeter.}, language = {en} } @article{TrappLammersEngudaretal.2023, author = {Trapp, Svenja and Lammers, Tom and Engudar, Gokce and Hoehr, Cornelia and Denkova, Antonia G. and Paulßen, Elisabeth and de Kruijff, Robin M.}, title = {Membrane-based microfluidic solvent extraction of Ga-68 from aqueous Zn solutions: towards an automated cyclotron production loop}, series = {EJNMMI Radiopharmacy and Chemistry}, volume = {2023}, journal = {EJNMMI Radiopharmacy and Chemistry}, number = {8, Article number: 9}, publisher = {Springer Nature}, issn = {2365-421X}, doi = {10.1186/s41181-023-00195-2}, pages = {1 -- 14}, year = {2023}, language = {en} }