@article{LaarmannThomaMischetal.2023, author = {Laarmann, Lukas and Thoma, Andreas and Misch, Philipp and R{\"o}th, Thilo and Braun, Carsten and Watkins, Simon and Fard, Mohammad}, title = {Automotive safety approach for future eVTOL vehicles}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer Nature}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00655-0}, pages = {11 Seiten}, year = {2023}, abstract = {The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL's crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented.}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Powertrain Adaptions for LPG Usage in General Aviation}, series = {MTZ worldwide}, volume = {2022}, journal = {MTZ worldwide}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s38313-021-0756-6}, pages = {58 -- 62}, year = {2022}, abstract = {In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences.}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} } @article{FayyaziSardarThomasetal.2023, author = {Fayyazi, Mojgan and Sardar, Paramjotsingh and Thomas, Sumit Infent and Daghigh, Roonak and Jamali, Ali and Esch, Thomas and Kemper, Hans and Langari, Reza and Khayyam, Hamid}, title = {Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles}, volume = {15}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/su15065249}, pages = {38}, year = {2023}, abstract = {Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed.}, language = {en} } @article{DickhoffHorikawaFunke2021, author = {Dickhoff, Jens and Horikawa, Atsushi and Funke, Harald}, title = {Hydrogen Combustion - new DLE Combustor Addresses NOx Emissions and Flashback}, series = {Turbomachinery international : the global journal of energy equipment}, volume = {62}, journal = {Turbomachinery international : the global journal of energy equipment}, number = {4}, publisher = {MJH Life Sciences}, address = {Cranbury}, issn = {2767-2328}, pages = {26 -- 27}, year = {2021}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Carsten and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{BergmannMoehrenBraunetal.2023, author = {Bergmann, Ole and M{\"o}hren, Felix and Braun, Carsten and Janser, Frank}, title = {On the influence of elasticity on swept propeller noise}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-0210}, year = {2023}, abstract = {High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation.}, language = {en} } @article{BoehnischBraunMuscarelloetal.2023, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {A sensitivity study on aeroelastic instabilities of slender wings with a large propeller}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-1893}, pages = {1 -- 14}, year = {2023}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis.}, language = {de} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @article{Maurischat2022, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, series = {Journal of Number Theory}, volume = {240}, journal = {Journal of Number Theory}, publisher = {Elsevier}, address = {Orlando, Fla.}, issn = {0022-314X}, doi = {10.1016/j.jnt.2022.01.006}, pages = {145 -- 162}, year = {2022}, language = {en} }