@article{GrajewskiKoesterTurek2010, author = {Grajewski, Matthias and K{\"o}ster, Michael and Turek, Stefam}, title = {Numerical analysis and implementational aspects of a new multilevel grid deformation method}, series = {Applied Numerical Mathematics}, volume = {60}, journal = {Applied Numerical Mathematics}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9274}, doi = {10.1016/j.apnum.2010.03.017}, pages = {767 -- 781}, year = {2010}, abstract = {Recently, we introduced and mathematically analysed a new method for grid deformation (Grajewski et al., 2009) [15] we call basic deformation method (BDM) here. It generalises the method proposed by Liao et al. (Bochev et al., 1996; Cai et al., 2004; Liao and Anderson, 1992) [4], [6], [20]. In this article, we employ the BDM as core of a new multilevel deformation method (MDM) which leads to vast improvements regarding robustness, accuracy and speed. We achieve this by splitting up the deformation process in a sequence of easier subproblems and by exploiting grid hierarchy. Being of optimal asymptotic complexity, we experience speed-ups up to a factor of 15 in our test cases compared to the BDM. This gives our MDM the potential for tackling large grids and time-dependent problems, where possibly the grid must be dynamically deformed once per time step according to the user's needs. Moreover, we elaborate on implementational aspects, in particular efficient grid searching, which is a key ingredient of the BDM.}, language = {en} } @article{GronsfeldSparlaWeinnhold2010, author = {Gronsfeld, Richard and Sparla, Peter and Weinnhold, Wolfgang}, title = {Airborne und terrestrisches Laserscanning - neue Tools f{\"u}r den Talsperrenbetreiber?}, series = {Wasserwirtschaft}, volume = {100}, journal = {Wasserwirtschaft}, number = {4}, isbn = {0043-0978}, pages = {80 -- 82}, year = {2010}, language = {de} } @article{GrottkeBraunschweigPhilippenetal.2010, author = {Grottke, O. and Braunschweig, T. and Philippen, B. and Gatzweiler, Karl-Heinz and Gronloh, N. and Staat, Manfred and Rossaint, R. and Tolba, R.}, title = {A New Model for Blunt Liver Injuries in the Swine}, series = {European Surgical Research. 44 (2010), H. 2}, journal = {European Surgical Research. 44 (2010), H. 2}, isbn = {1421-9921}, pages = {65 -- 73}, year = {2010}, language = {en} } @inproceedings{GoemmelFrauenrathOttenetal.2010, author = {G{\"o}mmel, Andreas and Frauenrath, Tobias and Otten, Mario and Niendorf, Thoralf and Butenweg, Christoph}, title = {In-vivo measurements of vocal fold geometry using Magnetic Resonance Imaging}, series = {Fortschritte der Akustik - DAGA 2010, 36. Jahrestagung f{\"u}r Akustik}, booktitle = {Fortschritte der Akustik - DAGA 2010, 36. Jahrestagung f{\"u}r Akustik}, editor = {M{\"o}ser, Michael and Schulte-Fortkamp, Brgitte and Ochmann, Martin}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik}, address = {Berlin}, isbn = {978-3-9808659-8-2}, year = {2010}, language = {de} } @inproceedings{GoemmelNiendorfFrauenrathetal.2010, author = {G{\"o}mmel, Andreas and Niendorf, Thoralf and Frauenrath, Tobias and Otten, Mario and Butenweg, Christoph and Kob, Malte}, title = {3D vocal fold geometry mapping using Magnetic Resonance Imaging}, series = {Fortschritte der Akustik : 36. Deutsche Jahrestagung f{\"u}r Akustik, Band 1}, booktitle = {Fortschritte der Akustik : 36. Deutsche Jahrestagung f{\"u}r Akustik, Band 1}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik}, address = {Berlin}, organization = {Deutsche Jahrestagung f{\"u}r Akustik <36, 2010, Berlin>}, isbn = {978-3-9808659-8-2}, pages = {271 -- 272}, year = {2010}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2010, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays}, series = {Journal of solar energy engineering}, volume = {Vol. 132}, journal = {Journal of solar energy engineering}, number = {Iss. 1}, isbn = {0199-6231}, pages = {4 S.}, year = {2010}, language = {en} } @article{HarmsReisgenSchleseretal.2010, author = {Harms, Alexander and Reisgen, Uwe and Schleser, Markus and Schiebahn, Alexander and Thiele, Regina}, title = {Herausforderungen an die F{\"u}getechnik: Leichtbau und Kosteneffizienz beim Elektrofahrzeug}, series = {Elektromobilit{\"a}t made in Aachen. (RWTH-Themen : Berichte aus der Rheinisch-Westf{\"a}lischen Technischen Hochschule Aachen ; Ausg. 2010, 2)}, journal = {Elektromobilit{\"a}t made in Aachen. (RWTH-Themen : Berichte aus der Rheinisch-Westf{\"a}lischen Technischen Hochschule Aachen ; Ausg. 2010, 2)}, issn = {0179-079X}, pages = {58 -- 60}, year = {2010}, language = {de} } @article{HaselgruberMautnerThiele2010, author = {Haselgruber, Nikolaus and Mautner, Karin and Thiele, Jan}, title = {Usage Space Analysis for Reliability Testing}, series = {Quality and Reliability Engineering International}, volume = {26}, journal = {Quality and Reliability Engineering International}, number = {8}, publisher = {Wiley}, address = {New York}, issn = {1099-1638}, doi = {10.1002/qre.1155}, pages = {877 -- 885}, year = {2010}, abstract = {During the development process of a complex technical product, one widely used and important technique is accelerated testing where the applied stress on a component is chosen to exceed the reference stress, i.e. the stress encountered in field operation, in order to reduce the time to failure. For that, the reference stress has to be known. Since a complex technical product may fail regarding numerous failure modes, stress in general is highly dimensional rather than scalar. In addition, customers use their products individually, i.e. field operation should be described by a distribution rather than by one scalar stress value. In this paper, a way to span the customer usage space is shown. It allows the identification of worst case reference stress profiles in significantly reduced dimensions with minimal loss of information. The application example shows that even for a complex product like a combustion engine, stress information can be compressed significantly. With low measurement effort it turned out that only three reference stress cycles were sufficient to cover a broad range of customer stress variety.}, language = {en} } @inproceedings{HavermannSeilerHenning2010, author = {Havermann, Marc and Seiler, F. and Henning, P.}, title = {Shock Tunnel Experiments and CFD Simulation of Lateral Jet Interaction in Hypersonic Flows}, series = {New Results in Numerical and Experimental Fluid Mechanics VII; Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics VII; Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008}, editor = {Dillmann, Andreas and Heller, Gerd and Klaas, Michael and Kreplin, Hans-Peter and Nitsche, Wolfgang and Schr{\"o}der, Wolfgang}, publisher = {Springer}, address = {Berlin}, isbn = {9783642142437}, doi = {10.1007/978-3-642-14243-7_45}, pages = {365 -- 372}, year = {2010}, language = {en} } @book{Hebel2010, author = {Hebel, Christoph}, title = {Einsatzm{\"o}glichkeiten und Anforderungen von makroskopischen Personenverkehrsnachfragemodellen}, publisher = {Inst. f{\"u}r Stadtbauwesen und Stadtverkehr, RWTH Aachen}, address = {Aachen}, isbn = {978-3-88354-160-0}, pages = {XVIII, 133 S. : Ill., graph. Darst.}, year = {2010}, language = {de} }