@article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @inproceedings{BaeckerKochGeigeretal.2016, author = {B{\"a}cker, Matthias and Koch, C. and Geiger, F. and Eber, F. and Gliemann, H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier}, series = {Procedia Engineering}, volume = {Vol. 168}, booktitle = {Procedia Engineering}, issn = {1877-7058}, doi = {10.1016/j.proeng.2016.11.228}, pages = {618 -- 621}, year = {2016}, language = {en} } @article{PinkenburgSchiffelsSelmer2016, author = {Pinkenburg, Olaf and Schiffels, Johannes and Selmer, Thorsten}, title = {Das CoLibry-Konzept - ein Werkzeugkasten f{\"u}r die Synthetische Biologie: Bioproduktion}, series = {BIOspektrum}, volume = {22}, journal = {BIOspektrum}, number = {6}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s12268-016-0734-8}, pages = {593 -- 595}, year = {2016}, abstract = {Regardless of size or destination, synthetic biology starts with com-parably small information units, which need to be combined and properly arranged in order to achieve a certain goal. This may be the de novo synthesis of individual genes from oligonucleotides, a shuffling of protein domains in order to create novel biocatalysts, the assembly of multiple enzyme encoding genes in metabolic pathway design, or strain development at the production stage. The CoLibry concept has been designed in order to close the gap between recombinant production of individual genes and genome editing.}, language = {de} } @phdthesis{Schusser2015, author = {Schusser, Sebastian}, title = {Sensor-based degradation monitoring for the evaluation of (bio)degradable polymers}, publisher = {Universiteit Hasselt ; FH Aachen}, address = {Hasselt ; Aachen}, pages = {145 Seiten}, year = {2015}, language = {en} } @article{BaeckerKochEibenetal.2017, author = {B{\"a}cker, Matthias and Koch, Claudia and Eiben, Sabine and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors}, series = {Sensors and Actuators B: Chemical}, volume = {238}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.07.096}, pages = {716 -- 722}, year = {2017}, abstract = {The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips.}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @article{DollWagnerWagneretal.2016, author = {Doll, Theodor and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Engineering of functional interfaces / Theodor Doll ; Torsten Wagner ; Patrick Wagner ; Michael J. Sch{\"o}ning (eds.)}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201670641}, pages = {1393 -- 1394}, year = {2016}, language = {en} } @article{WagnerVornholtWerneretal.2016, author = {Wagner, Torsten and Vornholt, Wolfgang and Werner, Frederik and Yoshinobu, Tatsuo and Miyamoto, Ko-Ichiro and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening}, series = {Physics in medicine}, volume = {2016}, journal = {Physics in medicine}, number = {1}, issn = {2352-4510}, doi = {10.1016/j.phmed.2016.03.001}, pages = {2 -- 7}, year = {2016}, abstract = {The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution.}, language = {en} } @article{MiyamotoSatoAbeetal.2016, author = {Miyamoto, Ko-Ichiro and Sato, Takuya and Abe, Minami and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices}, series = {Micromachines}, volume = {7}, journal = {Micromachines}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi7070111}, pages = {111}, year = {2016}, abstract = {A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement.}, language = {en} } @inproceedings{KasperSchiffelsKrafftetal.2016, author = {Kasper, Katharina and Schiffels, Johannes and Krafft, Simone and Kuperjans, Isabel and Elbers, Gereon and Selmer, Thorsten}, title = {Biogas Production on Demand Regulated by Butyric Acid Addition}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, volume = {32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012009}, pages = {012009/1 -- 012009/4}, year = {2016}, language = {en} }