@incollection{GeislerPieper2017, author = {Geisler, Simon and Pieper, Martin}, title = {Mathematik PLuS als E-Book. Kann ein E-Book zur Ingenieursmathematik alle Lerntypen ansprechen?}, series = {Das elektronische Schulbuch 2016}, booktitle = {Das elektronische Schulbuch 2016}, publisher = {LIT Verlag}, address = {Berlin}, isbn = {978-3-643-13475-2}, pages = {99 -- 111}, year = {2017}, language = {de} } @incollection{KrollLudwigs2017, author = {Kroll-Ludwigs, Kathrin}, title = {Einleitung vor \S 1297}, series = {B{\"u}rgerliches Gesetzbuch : Handkommentar mit AGG, EGBGB (Auszug), ErbbauRG, HausratsVO, LPartG, ProdHaftG, UKlaG, VAHRG und WEG}, booktitle = {B{\"u}rgerliches Gesetzbuch : Handkommentar mit AGG, EGBGB (Auszug), ErbbauRG, HausratsVO, LPartG, ProdHaftG, UKlaG, VAHRG und WEG}, editor = {Erman, Walter and Grunewald, Barbara and Maier-Reimer, Georg}, edition = {15., neu bearbeitete Auflage}, publisher = {Verlag Dr. Otto Schmidt}, address = {K{\"o}ln}, isbn = {978-3-504-47103-3}, pages = {4415 -- 4422}, year = {2017}, language = {de} } @incollection{KrollLudwigs2017, author = {Kroll-Ludwigs, Kathrin}, title = {Vorbemerkung vor \S 1297}, series = {B{\"u}rgerliches Gesetzbuch : Handkommentar mit AGG, EGBGB (Auszug), ErbbauRG, HausratsVO, LPartG, ProdHaftG, UKlaG, VAHRG und WEG}, booktitle = {B{\"u}rgerliches Gesetzbuch : Handkommentar mit AGG, EGBGB (Auszug), ErbbauRG, HausratsVO, LPartG, ProdHaftG, UKlaG, VAHRG und WEG}, editor = {Erman, Walter and Grunewald, Barbara and Maier-Reimer, Georg}, edition = {15., neu bearbeitete Auflage}, publisher = {Verlag Dr. Otto Schmidt}, address = {K{\"o}ln}, isbn = {978-3-504-47103-3}, pages = {4422 -- 4424}, year = {2017}, language = {de} } @incollection{KrollLudwigs2017, author = {Kroll-Ludwigs, Kathrin}, title = {Vorbemerkung vor \S 1353}, series = {B{\"u}rgerliches Gesetzbuch : Handkommentar mit AGG, EGBGB (Auszug), ErbbauRG, HausratsVO, LPartG, ProdHaftG, UKlaG, VAHRG und WEG}, booktitle = {B{\"u}rgerliches Gesetzbuch : Handkommentar mit AGG, EGBGB (Auszug), ErbbauRG, HausratsVO, LPartG, ProdHaftG, UKlaG, VAHRG und WEG}, editor = {Ermann, Walter and Grunewald, Barbara and Maier-Reimer, Georg}, edition = {15., neu bearbeitete Auflage}, publisher = {Verlag Dr. Otto Schmidt}, address = {K{\"o}ln}, isbn = {978-3-504-47103-3}, pages = {4456 -- 4464}, year = {2017}, language = {de} } @incollection{Dachwald2017, author = {Dachwald, Bernd}, title = {Light propulsion systems for spacecraft}, series = {Optical nano and micro actuator technology}, booktitle = {Optical nano and micro actuator technology}, editor = {Knopf, George K. and Otani, Yukitoshi}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781315217628 (eBook)}, pages = {577 -- 598}, year = {2017}, language = {en} } @incollection{Butenweg2017, author = {Butenweg, Christoph}, title = {Passt, wackelt und hat Luft: Mauerwerksbauten aus Leichtbeton in Erdbebengebieten}, series = {Beton-Bauteile, 65. Ausgabe (2017): Entwerfen - Planen - Ausf{\"u}hren}, booktitle = {Beton-Bauteile, 65. Ausgabe (2017): Entwerfen - Planen - Ausf{\"u}hren}, publisher = {Bauverl.}, address = {G{\"u}tersloh}, isbn = {978-3-7625-3676-5}, pages = {136 -- 140}, year = {2017}, language = {de} } @incollection{PieperWaehlisch2017, author = {Pieper, Martin and W{\"a}hlisch, Georg}, title = {Mehrwert von E-Learning durch f{\"a}cher{\"u}bergreifenden Einsatz}, series = {Teaching is Touching the Future \& ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Pr{\"u}fen}, booktitle = {Teaching is Touching the Future \& ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Pr{\"u}fen}, publisher = {UVW Universit{\"a}tsverlag Webler}, address = {Bielefeld}, isbn = {978-3-946017-05-9}, pages = {193 -- 196}, year = {2017}, language = {de} } @incollection{NiemuellerLakemeyerReuteretal.2017, author = {Niemueller, T. and Lakemeyer, G. and Reuter, S. and Jeschke, S. and Ferrein, Alexander}, title = {Benchmarking of Cyber-Physical Systems in Industrial Robotics: The RoboCup Logistics League as a CPS Benchmark Blueprint}, series = {Cyber-Physical Systems: Foundations, Principles and Applications}, booktitle = {Cyber-Physical Systems: Foundations, Principles and Applications}, publisher = {Academic Press}, address = {London}, doi = {10.1016/B978-0-12-803801-7.00013-4}, pages = {193 -- 207}, year = {2017}, abstract = {In the future, we expect manufacturing companies to follow a new paradigm that mandates more automation and autonomy in production processes. Such smart factories will offer a variety of production technologies as services that can be combined ad hoc to produce a large number of different product types and variants cost-effectively even in small lot sizes. This is enabled by cyber-physical systems that feature flexible automated planning methods for production scheduling, execution control, and in-factory logistics. During development, testbeds are required to determine the applicability of integrated systems in such scenarios. Furthermore, benchmarks are needed to quantify and compare system performance in these industry-inspired scenarios at a comprehensible and manageable size which is, at the same time, complex enough to yield meaningful results. In this chapter, based on our experience in the RoboCup Logistics League (RCLL) as a specific example, we derive a generic blueprint for how a holistic benchmark can be developed, which combines a specific scenario with a set of key performance indicators as metrics to evaluate the overall integrated system and its components.}, language = {de} } @incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} }