@inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska and Kishimoto, Tsuyoshi and Okada, Koichi}, title = {Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions}, publisher = {ASME}, address = {New York, NY}, doi = {10.1115/GT2021-58926}, pages = {11 Seiten}, year = {2021}, abstract = {The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration.}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska}, title = {Numerical investigation of micromix hydrogen flames at different combustor pressure levels}, series = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, booktitle = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, doi = {10.1299/jsmeicope.2021.15.2021-0237}, pages = {4 Seiten}, year = {2021}, abstract = {This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range.}, language = {en} } @inproceedings{Dachwald2004, author = {Dachwald, Bernd}, title = {Solar sail performance requirements for missions to the outer solar system and beyond}, series = {55th International Astronautical Congress 2004}, booktitle = {55th International Astronautical Congress 2004}, doi = {10.2514/6.IAC-04-S.P.11}, pages = {1 -- 9}, year = {2004}, abstract = {Solar sails enable missions to the outer solar system and beyond, although the solar radiation pressure decreases with the square of solar distance. For such missions, the solar sail may gain a large amount of energy by first making one or more close approaches to the sun. Within this paper, optimal trajectories for solar sail missions to the outer planets and into near interstellar space (200 AU) are presented. Thereby, it is shown that even near/medium-term solar sails with relatively moderate performance allow reasonable transfer times to the boundaries of the solar system.}, language = {en} } @inproceedings{EggertKriska2022, author = {Eggert, Mathias and Kriska, Melina}, title = {Gamification for software development processes - relevant affordances and design principles}, series = {Proceedings of the 55th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 55th Hawaii International Conference on System Sciences}, publisher = {HICSS Publishing}, address = {Honolulu}, isbn = {978-0-9981331-5-7}, doi = {10.24251/HICSS.2022.200}, pages = {1614 -- 1623}, year = {2022}, abstract = {A Gamified Information System (GIS) implements game concepts and elements, such as affordances and game design principles to motivate people. Based on the idea to develop a GIS to increase the motivation of software developers to perform software quality tasks, the research work at hand aims at investigating relevant requirements from that target group. Therefore, 14 interviews with software development experts are conducted and analyzed. According to the results, software developers prefer the affordances points, narrative storytelling in a multiplayer and a round-based setting. Furthermore, six design principles for the development of a GIS are derived.}, language = {en} } @inproceedings{NikolovskiRekeElsenetal.2021, author = {Nikolovski, Gjorgji and Reke, Michael and Elsen, Ingo and Schiffer, Stefan}, title = {Machine learning based 3D object detection for navigation in unstructured environments}, series = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, booktitle = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, publisher = {IEEE}, isbn = {978-1-6654-7921-9}, doi = {10.1109/IVWorkshops54471.2021.9669218}, pages = {236 -- 242}, year = {2021}, abstract = {In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.}, language = {en} } @inproceedings{HauggKreyerKemperetal.2020, author = {Haugg, Albert Thomas and Kreyer, J{\"o}rg and Kemper, Hans and Hatesuer, Katerina and Esch, Thomas}, title = {Heat exchanger for ORC. adaptability and optimisation potentials}, series = {IIR International Rankine 2020 Conference}, booktitle = {IIR International Rankine 2020 Conference}, doi = {10.18462/iir.rankine.2020.1224}, pages = {10 Seiten}, year = {2020}, abstract = {The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine's cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine.}, language = {en} } @inproceedings{SchaenzleAltherrEdereretal.2015, author = {Sch{\"a}nzle, Christian and Altherr, Lena and Ederer, Thorsten and Pelz, Peter}, title = {TOR - Towards the energetically optimal ventilation system}, pages = {1 Seite}, year = {2015}, language = {en} } @inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Resilience enhancement of critical infrastructure - graph-theoretical resilience analysis of the water distribution system in the German city of Darmstadt}, series = {14th WCEAM Proceedings}, booktitle = {14th WCEAM Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64228-0}, doi = {10.1007/978-3-030-64228-0_13}, pages = {137 -- 149}, year = {2020}, abstract = {Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of water distribution systems (WDS), i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, graph-theoretical metrics have been proposed. In this study, a promising approach is first physically derived analytically and then applied to assess the resilience of the WDS for a district in a major German City. The topology based resilience index computed for every consumer node takes into consideration the resistance of the best supply path as well as alternative supply paths. This resistance of a supply path is derived to be the dimensionless pressure loss in the pipes making up the path. The conducted analysis of a present WDS provides insight into the process of actively influencing the resilience of WDS locally and globally by adding pipes. The study shows that especially pipes added close to the reservoirs and main branching points in the WDS result in a high resilience enhancement of the overall WDS.}, language = {en} } @inproceedings{AltherrEdererFarnetaneetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Farnetane, Lucas S. and P{\"o}ttgen, Philipp and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Multicriterial design of a hydrostatic transmission system via mixed-integer programming}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1_41}, pages = {301 -- 307}, year = {2017}, abstract = {In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system's reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system.}, language = {en} }