@article{MiyamotoIchimuraWagneretal.2012, author = {Miyamoto, K. and Ichimura, H. and Wagner, Torsten and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Chemical Imaging of ion Diffusion in a Microfluidic Channel}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.289}, pages = {886 -- 889}, year = {2012}, abstract = {The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution.}, language = {en} } @article{WagnerShigiaharaMiyamotoetal.2012, author = {Wagner, Torsten and Shigiahara, N. and Miyamoto, K. and Suzurikawa, J. and Finger, F. and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Light-addressable Potentiometric Sensors and Light-addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.290}, pages = {890 -- 893}, year = {2012}, abstract = {This work describes the novel combination of the light-addressable electrode (LAE) and the light-addressable potentiometric sensor (LAPS) into a microsystem set-up. Both the LAE as well as the LAPS shares the principle of addressing the active spot by means of a light beam. This enables both systems to manipulate resp. to detect an analyte with a high spatial resolution. Hence, combining both principles into a single set-up enables the active stimulation e.g., by means of electrolysis and a simultaneous observation e.g., the response of an entrapped biological cell by detection of extracellular pH changes. The work will describe the principles of both technologies and the necessary steps to integrate them into a single set-up. Furthermore, examples of application and operation of such systems will be presented.}, language = {en} } @article{IkenKirsanovLeginetal.2012, author = {Iken, Heiko and Kirsanov, D. and Legin, A. and Sch{\"o}ning, Michael Josef}, title = {Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.148}, pages = {322 -- 325}, year = {2012}, abstract = {A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively.}, language = {en} } @article{Weigand2012, author = {Weigand, Christoph}, title = {Statistical Tests Based on Reliability and Precision}, series = {Economic Quality Control : EQC ; international journal for quality and reliability}, volume = {27}, journal = {Economic Quality Control : EQC ; international journal for quality and reliability}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {1869-6147}, doi = {10.1515/eqc-2012-0002}, pages = {43 -- 64}, year = {2012}, abstract = {The construction of a statistical test is investigated which is based only on "reliability" and "precision" as quality criteria. The reliability of a statistical test is quantifiedin a straightforward way by the probability that the decision of the test is correct. However, the quantification of the precision of a statistical test is not at all evident. Thereforethe paper presents and discusses several approaches. Moreover the distinction of "nullhypothesis" and "alternative hypothesis" is not necessary any longer.}, language = {en} } @article{SchneiderSchneider2012, author = {Schneider, Bettina and Schneider, Wilhelm}, title = {Grundlagen der Unternehmensbesteuerung}, series = {Das Wirtschaftsstudium : wisu ; Zeitschrift f{\"u}r Ausbildung, Examen, Berufseinstieg und Fortbildung}, volume = {41}, journal = {Das Wirtschaftsstudium : wisu ; Zeitschrift f{\"u}r Ausbildung, Examen, Berufseinstieg und Fortbildung}, number = {10}, publisher = {Lange}, address = {D{\"u}sseldorf}, issn = {0340-3084}, pages = {1312 -- 1318}, year = {2012}, language = {de} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @inproceedings{LogenHoefkenSchuba2012, author = {Logen, Steffen and H{\"o}fken, Hans and Schuba, Marko}, title = {Simplifying RAM Forensics : A GUI and Extensions for the Volatility Framework}, series = {2012 Seventh International Conference on Availability, Reliability and Security (ARES), 20-24 August 2012, Prague, Czech Republic}, booktitle = {2012 Seventh International Conference on Availability, Reliability and Security (ARES), 20-24 August 2012, Prague, Czech Republic}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-2244-7}, doi = {10.1109/ARES.2012.12}, pages = {620 -- 624}, year = {2012}, abstract = {The Volatility Framework is a collection of tools for the analysis of computer RAM. The framework offers a multitude of analysis options and is used by many investigators worldwide. Volatility currently comes with a command line interface only, which might be a hinderer for some investigators to use the tool. In this paper we present a GUI and extensions for the Volatility Framework, which on the one hand simplify the usage of the tool and on the other hand offer additional functionality like storage of results in a database, shortcuts for long Volatility Framework command sequences, and entirely new commands based on correlation of data stored in the database.}, language = {en} } @article{SchubaHoefken2012, author = {Schuba, Marko and H{\"o}fken, Hans}, title = {Backtrack5: Datensammlung und Reporterstellung f{\"u}r Pentester mit MagicTree / H{\"o}fken, Hans ; Schuba, Marko}, series = {Hakin9. 73 (2012), H. 3}, journal = {Hakin9. 73 (2012), H. 3}, publisher = {-}, isbn = {1733-7186}, pages = {12 -- 16}, year = {2012}, language = {de} } @article{MuribTranCeunincketal.2012, author = {Murib, Mohammed S. and Tran, Anh Quang and Ceuninck, Ward de and Sch{\"o}ning, Michael Josef and Nesladek, Milos and Serpeng{\"u}zel, Ali and Wagner, Patrick}, title = {Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres}, series = {Physica Status Solidi A}, volume = {209}, journal = {Physica Status Solidi A}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100795}, pages = {1804 -- 1810}, year = {2012}, abstract = {Deoxyribonucleic acid (DNA) and protein recognition are now standard tools in biology. In addition, the special optical properties of microsphere resonators expressed by the high quality factor (Q-factor) of whispering gallery modes (WGMs) or morphology dependent resonances (MDRs) have attracted the attention of the biophotonic community. Microsphere-based biosensors are considered as powerful candidates to achieve label-free recognition of single molecules due to the high sensitivity of their WGMs. When the microsphere surface is modified with biomolecules, the effective refractive index and the effective size of the microsphere change resulting in a resonant wavelength shift. The transverse electric (TE) and the transverse magnetic (TM) elastic light scattering intensity of electromagnetic waves at 600 and 1400 nm are numerically calculated for DNA and unspecific binding of proteins to the microsphere surface. The effect of changing the optical properties was studied for diamond (refractive index 2.34), glass (refractive index 1.50), and sapphire (refractive index 1.75) microspheres with a 50 µm radius. The mode spacing, the linewidth of WGMs, and the shift of resonant wavelength due to the change in radius and refractive index, were analyzed by numerical simulations. Preliminary results of unspecific binding of biomolecules are presented. The calculated shift in WGMs can be used for biomolecules detection.}, language = {en} } @incollection{DigelMansurovBiisenbaevetal.2012, author = {Digel, Ilya and Mansurov, Zulkhair and Biisenbaev, Makhmut and Savitskaya, Irina and Kistaubaeva, Aida and Akimbekov, Nuraly S. and Zhubanova, Azhar}, title = {Heterogeneous Composites on the Basis of Microbial Cells and Nanostructured Carbonized Sorbents}, series = {Composites and Their Applications}, booktitle = {Composites and Their Applications}, editor = {Hu, Ning}, publisher = {Intech}, address = {London}, isbn = {978-953-51-0706-4}, doi = {10.5772/47796}, pages = {249 -- 272}, year = {2012}, abstract = {The fact that microorganisms prefer to grow on liquid/solid phase surfaces rather than in the surrounding aqueous phase was noticed long time ago [1]. Virtually any surface - animal, mineral, or vegetable - is a subject for microbial colonization and subsequent biofilm formation. It would be adequate to name just a few notorious examples on microbial colonization of contact lenses, ship hulls, petroleum pipelines, rocks in streams and all kinds of biomedical implants. The propensity of microorganisms to become surface-bound is so profound and ubiquitous that it vindicates the advantages for attached forms over their free-ranging counterparts [2]. Indeed, from ecological and evolutionary standpoints, for many microorganisms the surface-bound state means dwelling in nutritionally favorable, non-hostile environments [3]. Therefore, in most of natural and artificial ecosystems surface-associated microorganisms vastly outnumber organisms in suspension and often organize into complex communities with features that differ dramatically from those of free cells [4].}, language = {en} }