@article{UmutluBitzMaderwaldetal.2013, author = {Umutlu, Lale and Bitz, Andreas and Maderwald, Stefan and Orzada, Stephan and Kinner, Sonja and Kraff, Oliver and Brote, Irina and Ladd, Susanne C. and Schroeder, Tobias and Forsting, Michael}, title = {Contrast-enhanced ultra-high-field liver MRI: a feasibility trial}, series = {European Journal of Radiology}, volume = {82}, journal = {European Journal of Radiology}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0720-048X}, doi = {10.1016/j.ejrad.2011.07.004}, pages = {760 -- 767}, year = {2013}, language = {en} } @article{OrzadaMaderwaldPoseretal.2010, author = {Orzada, Stephan and Maderwald, Stefan and Poser, Benedikt Andreas and Bitz, Andreas and Quick, Harald H. and Ladd, Mark E.}, title = {RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI}, series = {Magnetic Resonance in Medicine}, volume = {64}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.22527}, pages = {327 -- 333}, year = {2010}, abstract = {As the field strength and, therefore, the operational frequency in MRI is increased, the wavelength approaches the size of the human head/body, resulting in wave effects, which cause signal decreases and dropouts. Several multichannel approaches have been proposed to try to tackle these problems, including RF shimming, where each element in an array is driven by its own amplifier and modulated with a certain (constant) amplitude and phase relative to the other elements, and Transmit SENSE, where spatially tailored RF pulses are used. In this article, a relatively inexpensive and easy to use imaging scheme for 7 Tesla imaging is proposed to mitigate signal voids due to B1 field inhomogeneity. Two time-interleaved images are acquired using a different excitation mode for each. By forming virtual receive elements, both images are reconstructed together using GRAPPA to achieve a more homogeneous image, with only small SNR and SAR penalty in head and body imaging at 7 Tesla.}, language = {en} } @article{KobusBitzUdenetal.2012, author = {Kobus, Thiele and Bitz, Andreas and Uden, Mark J. van and Lagemaat, Miram W. and Rothgang, Eva and Orzada, Stephan and Heerschap, Arend and Scheenen, Tom W. J.}, title = {In vivo 31P MR spectroscopic imaging of the human prostate at 7 T: safety and feasibility}, series = {Magnetic Resonance in Medicine}, volume = {68}, journal = {Magnetic Resonance in Medicine}, number = {6}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24175}, pages = {1683 -- 1695}, year = {2012}, abstract = {31P MR spectroscopic imaging of the human prostate provides information about phosphorylated metabolites that could be used for prostate cancer characterization. The sensitivity of a magnetic field strength of 7 T might enable 3D 31P MR spectroscopic imaging with relevant spatial resolution in a clinically acceptable measurement time. To this end, a 31P endorectal coil was developed and combined with an eight-channel 1H body-array coil to relate metabolic information to anatomical location. An extensive safety validation was performed to evaluate the specific absorption rate, the radiofrequency field distribution, and the temperature distribution of both coils. This validation consisted of detailed Finite Integration Technique simulations, confirmed by MR thermometry and Burn:x-wiley:07403194:media:MRM24175:tex2gif-stack-1 measurements in a phantom and in vivo temperature measurements. The safety studies demonstrated that the presence of the 31P endorectal coil had no influence on the specific absorption rate levels and temperature distribution of the external eight-channel 1H array coil. To stay within a 10 g averaged local specific absorption rate of 10 W/kg, a maximum time-averaged input power of 33 W for the 1H array coil was allowed. For transmitting with the 31P endorectal coil, our safety limit of less than 1°C temperature increase in vivo during a 15-min MR spectroscopic imaging experiment was reached at a time-averaged input power of 1.9 W. With this power setting, a second in vivo measurement was performed on a healthy volunteer. Using adiabatic excitation, 3D 31P MR spectroscopic imaging produced spectra from the entire prostate in 18 min with a spatial resolution of 4 cm3. The spectral resolution enabled the separate detection of phosphocholine, phosphoethanolamine, inorganic phosphate, and other metabolites that could play an important role in the characterization of prostate cancer.}, language = {en} } @article{OrzadaMaderwaldPoseretal.2012, author = {Orzada, S. and Maderwald, S. and Poser, B. A. and Johst, S. and Kannengiesser, S. and Ladd, M. E. and Bitz, Andreas}, title = {Time-interleaved acquisition of modes: an analysis of SAR and image contrast implications}, series = {Magnetic Resonance in Medicine}, volume = {67}, journal = {Magnetic Resonance in Medicine}, number = {4}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.23081}, pages = {1033 -- 1041}, year = {2012}, abstract = {s the magnetic field strength and therefore the operational frequency in MRI are increased, the radiofrequency wavelength approaches the size of the human head/body, resulting in wave effects which cause signal decreases and dropouts. Especially, whole-body imaging at 7 T and higher is therefore challenging. Recently, an acquisition scheme called time-interleaved acquisition of modes has been proposed to tackle the inhomogeneity problems in high-field MRI. The basic premise is to excite two (or more) different Burn:x-wiley:07403194:media:MRM23081:tex2gif-stack-1 modes using static radiofrequency shimming in an interleaved acquisition, where the complementary radiofrequency patterns of the two modes can be exploited to improve overall signal homogeneity. In this work, the impact of time-interleaved acquisition of mode on image contrast as well as on time-averaged specific absorption rate is addressed in detail. Time-interleaved acquisition of mode is superior in Burn:x-wiley:07403194:media:MRM23081:tex2gif-stack-2 homogeneity compared with conventional radiofrequency shimming while being highly specific absorption rate efficient. Time-interleaved acquisition of modes can enable almost homogeneous high-field imaging throughout the entire field of view in PD, T2, and T2*-weighted imaging and, if a specified homogeneity criterion is met, in T1-weighted imaging as well.}, language = {en} } @article{OrzadaJohstMaderwaldetal.2013, author = {Orzada, Stephan and Johst, S{\"o}ren and Maderwald, Stefan and Bitz, Andreas and Solbach, Klaus and Ladd, Mark E.}, title = {Mitigation of B1(+) inhomogeneity on single-channel transmit systems with TIAMO}, series = {Magnetic Resonance in Medicine}, volume = {70}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24453}, pages = {290 -- 294}, year = {2013}, language = {en} } @article{UmutluOrzadaKinneretal.2011, author = {Umutlu, Lale and Orzada, Stephan and Kinner, Sonja and Maderwald, Stefan and Bronte, Irina and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Antoch, Gerald and Ladd, Mark E. and Quick, Harald H. and Lauenstein, Thomas C.}, title = {Renal imaging at 7 Tesla: preliminary results}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, pages = {841 -- 849}, year = {2011}, abstract = {Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value.}, language = {en} } @article{UmutluMaderwaldKinneretal.2013, author = {Umutlu, L. and Maderwald, S. and Kinner, S. and Kraff, O. and Bitz, Andreas and Orzada, S. and Johst, S. and Wrede, K. and Forsting, M. and Ladd, M. E. and Lauenstein, T. C. and Quick, H. H.}, title = {First-pass contrast-enhanced renal MRA at 7 Tesla: initial results}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-012-2666-0}, pages = {1059 -- 1066}, year = {2013}, language = {en} } @article{KraffWredeSchoembergetal.2013, author = {Kraff, Oliver and Wrede, Karsten H. and Schoemberg, Tobias and Dammann, Philipp and Noureddine, Yacine and Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {MR safety assessment of potential RF heating from cranial fixation plates at 7 T}, series = {Medical Physics}, volume = {40}, journal = {Medical Physics}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.4795347}, pages = {042302-1 -- 042302-10}, year = {2013}, language = {en} } @article{BitzFelderWittig2013, author = {Bitz, Andreas and Felder, Jorg and Wittig, Tilmann}, title = {Designing MRI Coils with Aid of Simulation}, series = {Microwaves \& RF}, volume = {52}, journal = {Microwaves \& RF}, number = {7}, publisher = {Penton}, address = {Cleveland, Ohio}, issn = {0745-2993}, pages = {56}, year = {2013}, language = {en} } @article{UmutluKraffFischeretal.2013, author = {Umutlu, Lale and Kraff, Oliver and Fischer, Anja and Kinner, Sonja and Maderwald, Stefan and Nassenstein, Kai and Nensa, Felix and Gr{\"u}neisen, Johannes and Orzada, Stephan and Bitz, Andreas and Forsting, Michael and Ladd, Mark E. and Lauenstein, Thomas C.}, title = {Seven-Tesla MRI of the female pelvis}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {9}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-013-2868-0}, pages = {2364 -- 2373}, year = {2013}, language = {en} }