@inproceedings{BrockmannSultanowCzarnecki2018, author = {Brockmann, Carsten and Sultanow, Eldar and Czarnecki, Christian}, title = {Enterprise architectures between agility and traditional methodologies}, series = {GI Edition Proceedings Band 285 Workshops der INFORMATIK 2018}, booktitle = {GI Edition Proceedings Band 285 Workshops der INFORMATIK 2018}, editor = {Czarnecki, Christian and Brockmann, Carsten and Sultanow, Eldar and Koschmider, Agnes and Selzer, Annika and Gesellschaft f{\"u}r Informatik e. V.,}, publisher = {K{\"o}llen}, address = {Bonn}, isbn = {9783885796794}, issn = {1617-5468}, pages = {1 Seite}, year = {2018}, abstract = {For this year's workshop on Enterpirse Architecture in Research and Practice we have received eight submissions from which four have passed the rigorous peer-review. The acceptance quote of 50\% assures that only advancements in the field are included in our workshop.}, language = {en} } @inproceedings{BensbergAuthCzarneckietal.2018, author = {Bensberg, Frank and Auth, Gunnar and Czarnecki, Christian and W{\"o}rndle, Christopher}, title = {Transforming literature-intensive research processes through text analytics - design, implementation and lessons learned}, editor = {Kemal İlter, H.}, doi = {10.6084/m9.figshare.7582073.v1}, pages = {9 Seiten}, year = {2018}, abstract = {The continuing growth of scientific publications raises the question how research processes can be digitalized and thus realized more productively. Especially in information technology fields, research practice is characterized by a rapidly growing volume of publications. For the search process various information systems exist. However, the analysis of the published content is still a highly manual task. Therefore, we propose a text analytics system that allows a fully digitalized analysis of literature sources. We have realized a prototype by using EBSCO Discovery Service in combination with IBM Watson Explorer and demonstrated the results in real-life research projects. Potential addressees are research institutions, consulting firms, and decision-makers in politics and business practice.}, language = {en} } @inproceedings{BrockmannSultanowCzarnecki2019, author = {Brockmann, Carsten and Sultanow, Eldar and Czarnecki, Christian}, title = {Is enterprise architecture still relevant in the digital age?}, series = {GI Edition Proceedings Band 295 INFORMATIK 2019, Workshop-Beitr{\"a}ge}, booktitle = {GI Edition Proceedings Band 295 INFORMATIK 2019, Workshop-Beitr{\"a}ge}, editor = {Draude, Claude and Lange, Martin and Sick, Bernhard}, publisher = {K{\"o}llen}, address = {Bonn}, isbn = {9783885796893}, issn = {1617-5468}, doi = {10.18420/inf2019_ws01}, pages = {21 -- 21}, year = {2019}, language = {en} } @inproceedings{AuthCzarneckiBensberg2019, author = {Auth, Gunnar and Czarnecki, Christian and Bensberg, Frank}, title = {Impact of robotic process automation on enterprise architectures}, series = {GI Edition Proceedings Band 295 INFORMATIK 2019, Workshop-Beitr{\"a}ge}, booktitle = {GI Edition Proceedings Band 295 INFORMATIK 2019, Workshop-Beitr{\"a}ge}, editor = {Draude, Claude and Lange, Martin and Sick, Bernhard and Gesellschaft f{\"u}r Informatik e.V. (GI),}, publisher = {K{\"o}llen}, address = {Bonn}, isbn = {9783885796893}, issn = {1617-5468}, doi = {10.18420/inf2019_ws05}, pages = {59 -- 65}, year = {2019}, abstract = {The initial idea of Robotic Process Automation (RPA) is the automation of business processes through the presentation layer of existing application systems. For this simple emulation of user input and output by software robots, no changes of the systems and architecture is required. However, considering strategic aspects of aligning business and technology on an enterprise level as well as the growing capabilities of RPA driven by artificial intelligence, interrelations between RPA and Enterprise Architecture (EA) become visible and pose new questions. In this paper we discuss the relationship between RPA and EA in terms of perspectives and implications. As workin- progress we focus on identifying new questions and research opportunities related to RPA and EA.}, language = {en} } @inproceedings{RitschelStenzelCzarneckietal.2021, author = {Ritschel, Konstantin and Stenzel, Adina and Czarnecki, Christian and Hong, Chin-Gi}, title = {Realizing robotic process automation potentials: an architectural perspective on a real-life implementation case}, series = {GI Edition Proceedings Band 314 "INFORMATIK 2021" Computer Science \& Sustainability}, booktitle = {GI Edition Proceedings Band 314 "INFORMATIK 2021" Computer Science \& Sustainability}, editor = {Gesellschaft f{\"u}r Informatik e.V. (GI),}, publisher = {K{\"o}llen}, address = {Bonn}, isbn = {9783885797081}, issn = {1617-5468}, doi = {10.18420/informatik2021-108}, pages = {1303 -- 1311}, year = {2021}, abstract = {The initial idea of Robotic Process Automation (RPA) is the automation of business processes through a simple emulation of user input and output by software robots. Hence, it can be assumed that no changes of the used software systems and existing Enterprise Architecture (EA) is required. In this short, practical paper we discuss this assumption based on a real-life implementation project. We show that a successful RPA implementation might require architectural work during analysis, implementation, and migration. As practical paper we focus on exemplary lessons-learned and new questions related to RPA and EA.}, language = {en} } @inproceedings{AmirBauckhageChircuetal.2022, author = {Amir, Malik and Bauckhage, Christian and Chircu, Alina and Czarnecki, Christian and Knopf, Christian and Piatkowski, Nico and Sultanow, Eldar}, title = {What can we expect from quantum (digital) twins?}, series = {Wirtschaftsinformatik 2022 Proceedings}, booktitle = {Wirtschaftsinformatik 2022 Proceedings}, publisher = {AIS Electronic Library (AISeL)}, pages = {1 -- 14}, year = {2022}, abstract = {Digital twins enable the modeling and simulation of real-world entities (objects, processes or systems), resulting in improvements in the associated value chains. The emerging field of quantum computing holds tremendous promise forevolving this virtualization towards Quantum (Digital) Twins (QDT) and ultimately Quantum Twins (QT). The quantum (digital) twin concept is not a contradiction in terms - but instead describes a hybrid approach that can be implemented using the technologies available today by combining classicalcomputing and digital twin concepts with quantum processing. This paperpresents the status quo of research and practice on quantum (digital) twins. It alsodiscuses their potential to create competitive advantage through real-timesimulation of highly complex, interconnected entities that helps companies better address changes in their environment and differentiate their products andservices.}, language = {en} } @article{SchuellerRuhlDinstuehlerSengeretal.2022, author = {Sch{\"u}ller-Ruhl, Aaron and Dinst{\"u}hler, Leonard and Senger, Thorsten and Bergfeld, Stefan and Ingenhag, Christian and Fleischhaker, Robert}, title = {Direct fabrication of arbitrary phase masks in optical glass via ultra-short pulsed laser writing of refractive index modifications}, series = {Applied Physics B}, volume = {128}, journal = {Applied Physics B}, number = {Article number: 208}, editor = {Mackenzie, Jacob}, publisher = {Springer}, address = {Berlin}, issn = {1432-0649 (Online)}, doi = {10.1007/s00340-022-07928-2}, pages = {1 -- 11}, year = {2022}, abstract = {We study the possibility to fabricate an arbitrary phase mask in a one-step laser-writing process inside the volume of an optical glass substrate. We derive the phase mask from a Gerchberg-Saxton-type algorithm as an array and create each individual phase shift using a refractive index modification of variable axial length. We realize the variable axial length by superimposing refractive index modifications induced by an ultra-short pulsed laser at different focusing depth. Each single modification is created by applying 1000 pulses with 15 μJ pulse energy at 100 kHz to a fixed spot of 25 μm diameter and the focus is then shifted axially in steps of 10 μm. With several proof-of-principle examples, we show the feasibility of our method. In particular, we identify the induced refractive index change to about a value of Δn=1.5⋅10-3. We also determine our current limitations by calculating the overlap in the form of a scalar product and we discuss possible future improvements.}, language = {en} } @inproceedings{BlaneckBornheimGriegeretal.2022, author = {Blaneck, Patrick Gustav and Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {Automatic readability assessment of german sentences with transformer ensembles}, series = {Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text}, booktitle = {Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text}, publisher = {Association for Computational Linguistics}, address = {Potsdam}, doi = {10.48550/arXiv.2209.04299}, pages = {57 -- 62}, year = {2022}, abstract = {Reliable methods for automatic readability assessment have the potential to impact a variety of fields, ranging from machine translation to self-informed learning. Recently, large language models for the German language (such as GBERT and GPT-2-Wechsel) have become available, allowing to develop Deep Learning based approaches that promise to further improve automatic readability assessment. In this contribution, we studied the ability of ensembles of fine-tuned GBERT and GPT-2-Wechsel models to reliably predict the readability of German sentences. We combined these models with linguistic features and investigated the dependence of prediction performance on ensemble size and composition. Mixed ensembles of GBERT and GPT-2-Wechsel performed better than ensembles of the same size consisting of only GBERT or GPT-2-Wechsel models. Our models were evaluated in the GermEval 2022 Shared Task on Text Complexity Assessment on data of German sentences. On out-of-sample data, our best ensemble achieved a root mean squared error of 0:435.}, language = {en} } @inproceedings{SteuerDankertSharmaBlecketal.2017, author = {Steuer-Dankert, Linda and Sharma, Mamta Rameshwarlal and Bleck, Wolfgang and Leicht-Scholten, Carmen}, title = {Innovation through Diversity - Development of a Diversity and Innovation management concept}, series = {International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan}, booktitle = {International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan}, editor = {Farn, C. K.}, publisher = {Kuang Hui Chiu}, address = {Osaka}, issn = {2218-6387}, pages = {Panel C}, year = {2017}, abstract = {Acknowledging that a diverse workforce could be a potential source of innovation, the current research deals with the fine details of why diversity management is central to achieving innovation in heterogeneous research groups and how this could be effectively realized in an organization. The types of heterogeneities addressed mainly include gender, qualification, academic discipline and intercultural perspectives. The type of organization being dealt with in this work is a complex association of research institutes at a technical university in Germany (RWTH Aachen University), namely a 'Cluster of Excellence', whereby several institutes of the university work collaboratively in different sub-projects. The 'Cluster of Excellence' is a part of the 'Excellence Initiative' of the German federal and state governments German Research Foundation (DFG) and German Council of Science and Humanities, with the ultimate aim of promoting cutting-edge research. To support interdisciplinary collaboration and thus the performance of the cluster, the development of a diversity and innovation management concept is presently in the conceptual phase and will be described in the frame of this paper. The 3-S-Diversity Model, composed of the three elements: skills, structure and strategy, serves as a basis for the development of the concept. The proposed concept consists of six phases; the first two phases lay the ground work by developing an understanding of the status quo on the forms of diversity in the Cluster of Excellence, the type of organizational structure of the member institutes and the varieties of specialist work cultures of the same. The third and the fourth phases build up on this foundation by means of qualitative and quantitative studies. While the third phase deals with the sensitization of the management level to the close connection between diversity and innovation; the need to manage them thereafter and find tailor-made methods of doing so, the fourth phase shall mainly focus on the mindset of the employees in this regard. The fifth phase shall consolidate the learnings and the ideas developed in the course of the first four phases into an implementable strategy. The ultimate phase shall be the implementation of this concept in the Cluster. The first three phases have been accomplished successfully and the preliminary results are already available.}, language = {en} } @article{MolinnusJanusFangetal.2022, author = {Molinnus, Denise and Janus, Kevin Alexander and Fang, Anyelina C. and Drinic, Aleksander and Achtsnicht, Stefan and K{\"o}pf, Marius and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thick-film carbon electrode deposited onto a biodegradable fibroin substrate for biosensing applications}, series = {Physica status solidi (a)}, volume = {219}, journal = {Physica status solidi (a)}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202200100}, pages = {1 -- 9}, year = {2022}, abstract = {This study addresses a proof-of-concept experiment with a biocompatible screen-printed carbon electrode deposited onto a biocompatible and biodegradable substrate, which is made of fibroin, a protein derived from silk of the Bombyx mori silkworm. To demonstrate the sensor performance, the carbon electrode is functionalized as a glucose biosensor with the enzyme glucose oxidase and encapsulated with a silicone rubber to ensure biocompatibility of the contact wires. The carbon electrode is fabricated by means of thick-film technology including a curing step to solidify the carbon paste. The influence of the curing temperature and curing time on the electrode morphology is analyzed via scanning electron microscopy. The electrochemical characterization of the glucose biosensor is performed by amperometric/voltammetric measurements of different glucose concentrations in phosphate buffer. Herein, systematic studies at applied potentials from 500 to 1200 mV to the carbon working electrode (vs the Ag/AgCl reference electrode) allow to determine the optimal working potential. Additionally, the influence of the curing parameters on the glucose sensitivity is examined over a time period of up to 361 days. The sensor shows a negligible cross-sensitivity toward ascorbic acid, noradrenaline, and adrenaline. The developed biocompatible biosensor is highly promising for future in vivo and epidermal applications.}, language = {en} }